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Absrtact

Herein, we discuss the existence of overlapping edge unfoldings for convex regular-faced
polyhedrons. Horiyama and Shoji showed that there are no overlapping edge unfold-
ings for all platonic solids and five shapes of Archimedean solids. The remaining five
Archimedean solids were also found to have edge unfoldings that overlap. In this study,
we propose a method called rotational unfolding to find an overlapping edge unfold-
ing of a polyhedron. We show that all the edge unfoldings of an icosidodecahedron,
a rhombitruncated cuboctahedron, an n-gonal Archimedean prism (3 ≤ n ≤ 23), an
m-gonal Archimedean antiprism (3 ≤ m ≤ 11), and 48 types of Johnson solids do not
overlap. Our algorithm finds overlapping edge unfoldings for a snub cube, and 44 types
of Johnson solids. We present analytic proof that an overlapping edge unfolding exists
in an n-gonal Archimedean prism (n ≥ 24), and an m-gonal Archimedean antiprism
(m ≥ 12). Our results prove the existence of overlapping edge unfoldings for convex
regular-faced polyhedrons.
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Chapter 1

Introduction

The study of unfoldings of polyhedrons is known to have originated from the publication
“Underweysung der messung mit dem zirckel un richt scheyt” [3] by Albrecht Dürer
in 1525 [4]. Albrecht Dürer drew some edge unfoldings that cut along the edges of
a polyhedron and formed the plane’s flat polygon. However, all the edge unfoldings
are nonoverlapping polygons, i.e., no two faces in the polyhedron exhibit overlapping
unfoldings. The following open problem is obtained from this book:

Open Problem 1 ( [4], Open Problem 21.1). Does every convex polyhedron have a
nonoverlapping edge unfolding?

Any convex polyhedron has nonoverlapping unfoldings, i.e., when the polyhedron
surface is cut [11, 14]. However, Namiki and Fukuda found a convex polyhedron that
has an overlapping edge unfolding [12]. Biedl et al. in 1998 and Grünbaum in 2003
discovered that there exists a nonconvex polyhedron whose every edge unfolding over-
laps [1, 6]. Some studies have reported on the existence and/or the number of over-
lapping edge unfoldings for convex regular-faced polyhedrons. A snub dodecahedron
has an overlapping edge unfolding [2]. Horiyama and Shoji presented an algorithm that
enumerates overlapping edge unfoldings for a polyhedron. Their algorithm first enumer-
ates edge unfoldings using binary decision diagrams and then checks the overlapping by
numerical calculations for each unfolding. They found overlapping edge unfoldings for a
truncated dodecahedron, truncated icosahedron, rhombicosidodecahedron, and rhom-
bitruncated icosidodecahedron, as shown in Figure 1.1. In addition, they confirmed
that platonic solids and five shapes of Archimedean solids do not have overlapping edge
unfoldings [7, 8] (see Table 1.1). The edge unfoldings are represented as spanning
trees of a polyhedral graph. The algorithm by Horiyama and Shoji first enumerates
the spanning trees to find overlapping edge unfoldings; however, if a polyhedron has
an excessive number of spanning trees, it is difficult to enumerate overlapping edge un-
foldings even if only a small number of them exist. Thus, they considered isomorphism
of unfoldings and enumeration of paths instead of enumeration of the spanning trees to
reduce the search space for finding overlapping edge unfolding [7]. However, it remains

1
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(a) Truncated dodecahedron (b) Truncated icosahedron

(c) Rhombicosidodecahedron (d) Rhombitruncated icosidodecahedron

Figure 1.1: Examples of overlapping edge unfoldings [8]. The right edge unfolding can
be obtained by cutting along the thick line of the left convex polyhedron.

to be clarified a snub cube, an icosidodecahedron, or a rhombitruncated cuboctahe-
dron has overlapping edge unfoldings. Schlickenrieder showed that n-gonal prisms have
overlapping edge unfoldings, as shown in Figure 1.2 [13]. However, the side faces of
n-gonal prisms are not regular; therefore, the overlapping edge unfoldings for n-gonal
Archimedean prisms or n-gonal Archimedean antiprisms have not been studied. It is
not clarified Johnson solids have overlapping edge unfoldings. DeSplinter et al. recently
studied the edge unfoldings for high-dimensional cubes and showed that a spanning tree
of a Roberts graph can represent an edge unfolding [5]. They proposed a rolling and
unfolding method, in which the cubes are rotated on a spanning tree and the edges are
cut to ensure that they do not overlap.

Our contributions. Herein, we propose a method for determining an overlapping
edge unfolding called rotational unfolding for a polyhedron. The basic principle of our
method is the same as that of the rolling and unfolding method. First, a polyhedron
is put on a plane, and the following three steps are performed repeatedly: the bottom
edges are cut, the polyhedron is rotated in the plane, and overlapping edge unfoldings
are searched. The rolling and unfolding method is suitable for determining edge unfold-
ings for high-dimensional cubes but not for general shapes. Therefore, we extend the
method to n-gon by proposing pruning methods on the rotational unfolding using the
distance property and symmetry of a polyhedron to determine overlapping unfoldings
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Table 1.1: Existence of an overlapping edge unfolding for platonic solids, Archimedean
Solids and (anti)prisms.

Name Number of edge unfoldings [9]
Is there

an overlapping
edge unfolding?

Number of
overlapping
patterns

Tetrahedron 2 No -
Hexahedron 11 No -
Octahedron 11 No -

Dodecahedron 43,380 No [8] -
Icosahedron 43,380 No [8] -

Truncated Tetrahedron 261 No [7] -
Cuboctahedron 6,912 No [7] -

Truncated hexahedron 675,585 No [7] -
Truncated octahedron 2,108,512 No [7] -
Rhombicuboctahedron 6,272,012,000 No [7] -
Icosidodecahedron 1,741,425,868,800 No -

Snub cube 3,746,001,752,064 Yes 3
Rhombitruncated cuboctahedron 258,715,122,137,472 No -

Truncated dodecahedron 41,518,828,261,687,500 Yes [8] 1
Truncated icosahedron 3,127,432,220,939,473,920 Yes [8] 2

Rhombicosidodecahedron 1,679,590,540,992,923,166,257,971,200 Yes [8] Open
Snub dodecahedron 7,303,354,923,116,108,380,042,995,304,896,000 Yes [2] Open

Rhombitruncated icosidodecahedron 181,577,189,197,376,045,928,994,520,239,942,164,480 Yes [8] Open

n-gonal Archimedean prism
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efficiently. As a result, we obtain the following:

• We show that all the edge unfoldings of an icosidodecahedron and a rhombitrun-
cated cuboctahedron do not overlap and that a snub cube has only three types
of overlapping edge unfoldings, as shown in Figure 1.3, with two vertices of faces
in contact with each other. These are indicated in bold in Table 1.1. These re-
sults are used to the determine the existence of overlapping edge unfoldings for
Archimedean solids.

• We find a new type of overlapping edge unfoldings for a truncated icosahedron,
as shown in Figure 1.4, and show that only one and two types of edge unfoldings
exist in a truncated dodecahedron and truncated icosahedron, respectively.

• We show that 48 Johnson solids do not have overlapping edge unfoldings and
44 Johnson solids have overlapping edge unfoldings, as shown in Table 1.2. For
20 solids in the 44 Johnson solids which have overlapping edge unfoldings, we
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Figure 1.2: Overlapping edge unfoldings for an n-gonal prisms [13].

Figure 1.3: Three types of edge unfoldings have two faces in contact with the snub
cube. The edge unfolding can be obtained by cutting each snub cube along the thick
line.

enumerate the overlapping patterns. We find some edge unfoldings in Johnson
solids with two vertices of faces, the edge of one face and the vertex of the other
face, or two edges of faces in contact with each other.

• Through rotational unfolding, we show that overlapping edge unfoldings do not
exist for n-gonal Archimedean prisms and m-gonal Archimedean anti-prisms for
3 ≤ n ≤ 23 and 3 ≤ m ≤ 11 by rotational unfolding. We also demonstrate that
overlapping edge unfoldings exist in n-gonal Archimedean prisms and m-gonal
Archimedean antiprisms for n ≥ 24 and m ≥ 12, as shown in Figure 1.5.

Our results prove the existence of overlapping edge unfoldings for convex regular-faced
polyhedrons.
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Figure 1.4: A new overlapping edge unfolding in a truncated icosahedron. The right
edge unfolding is obtained by cutting along the thick line of the left convex polyhedron.

Table 1.2: Existence of an overlapping edge unfolding for Johnson solids.

Name
Number of

edge unfoldings [9]

Is there
an overlapping
edge unfolding?

Number of
overlapping
patterns

Name
Number of

edge unfoldings [9]

Is there
an overlapping
edge unfolding?

Number of
overlapping
patterns

J1 8 No - J47 1,864,897,711,733,918,792 Yes Open
J2 15 No - J48 267,015,959,942,030,583,130 Yes Open
J3 308 No - J49 173 No -
J4 3,030 No - J50 1,401 No -
J5 29,757 No - J51 3,549 No -
J6 7,825,005 No - J52 4,201 No -
J7 63 No - J53 38,526 No -
J8 448 No - J54 19,035 Yes 1
J9 3,116 No - J55 88,776 Yes 1
J10 3,421 No - J56 176,967 Yes 1
J11 40,321 No - J57 544,680 Yes 1
J12 9 No - J58 9,272,497 Yes 1
J13 99 No - J59 82,580,526 Yes 1
J14 156 No - J60 410,335,964 Yes 1
J15 2,010 No - J61 4,790,966,400 Yes 1
J16 25,574 No - J62 7,050 No -
J17 13,041 No - J63 289 No -
J18 268,260 No - J64 1,409 No -
J19 28,427,091 No - J65 207,576 No -
J20 2,982,139,245 Yes 4 J66 6,865,163,910 Yes 13
J21 822,310,337,549 Yes 9 J67 5,685,916,514,256 Yes 13
J22 6,193,152 No - J68 6,849,584,355,849,548,062,500 Yes Open
J23 1,935,360,000 No - J69 46,849,407,942,992,327,926,343,838 Yes Open
J24 599,660,087,082 Yes 6 J70 232,575,882,499,181,854,544,317,560 Yes Open
J25 170,242,287,969,600 Yes Open J71 2,079,942,317,394,110,986,896,181,956,672 Yes Open
J26 152 No - J72 20,668,673,558,050,742,614,946,330,896 Yes Open
J27 27,195 No - J73 10,597,511,106,353.370,064,654,696,448 Yes Open
J28 1,867,560 No - J74 52,898,913,344,353,749,804,959,881,152 Yes Open
J29 1,934,427 No - J75 36,042,636,312,577,358,126,529,767,936 Yes Open
J30 125,939,163 No - J76 2,108,152,090,439,487,210,452,928 Yes Open
J31 132,627,603 No - J77 2,163,545,802,723,460,484,299,200 Yes Open
J32 69,953,702,412 Yes 2 J78 10,819,092,174,083,407,318,469,376 Yes Open
J33 74,520,844,992 Yes 2 J79 11,085,623,675,648,531,139,403,888 Yes Open
J34 9,650,165,403,136 Yes 1 J80 108,182,283,486,496,129,152 Yes Open
J35 25,158,925 No - J81 523,563,323,531,253,902,848 Yes Open
J36 25,203,000 No - J82 1,075,622,906,381,856,553,376 Yes Open
J37 18,874,379,520 No - J83 32,858,151,465,900,184 Yes Open
J38 13,537,250,963,730 Yes 4 J84 1,109 No -
J39 13,601,327,004,000 Yes 4 J85 80,742,129 No -
J40 7,537,820,216,388,070 Yes Open J86 21,204 No -
J41 7,580,441,138,131,750 Yes Open J87 326,423 No -
J42 1,048,493,264,659,994,295 Yes Open J88 500,959 No -
J43 1,055,767,519,017,973,725 Yes Open J89 8,094,150 No -
J44 882,609,105 Yes 4 J90 64,950,268 No -
J45 1,721,235 Yes 6 J91 108,936 No -
J46 3,254,364,517,723,165 Yes Open J92 39,287,808 No -
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(a) 24-gonal Archimedean prism

(b) 12-gonal Archimedean anti-prism

Figure 1.5: An overlapping edge unfolding in an n-gonal Archimedean (anti-)prism.
The right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.



Chapter 2

Preliminaries

Let G = (V,E) be a simple graph where V is a set of vertices and E ⊆ V × V is a
set of edges. A sequence of vertices (v1, . . . , vk) is a path if all vertices in the sequence
are distinct and every consecutive two vertices are adjacent. A graph is connected if
there exists a path between any two vertices of the graph. If a graph T = (VT , ET ) is
connected and |ET | = |VT | − 1, the graph is called a tree. A tree T = (VT , ET ) is a
spanning tree of G = (V,E) if VT = V and ET ⊆ E.

A polyhedron is a three-dimensional object consisting of at least four polygons, called
faces, joined at their edges. A convex polyhedron is a polyhedron with the interior
angles of all two faces less than π. A convex regular-faced polyhedron is a convex
polyhedron with all faces are regular polygon. A Platonic solid is a convex regular-
faced polyhedron with faces composed of congruent regular polygons. An n prism
is a polyhedron composed of two identical n-sided polygons, called bases, facing each
other, and n parallelograms, called side faces, connecting the corresponding edges of the
two bases. An n antiprism is a polyhedron composed of two bases of congruent n-sided
polygons and 2n-sided alternating triangles. An n-gonal (anti)prism is an n (anti)prism
if the bases are n-sided regular polygons and an n-gonal Archimedean (anti)prism is
an n-gonal (anti)prism if it is a convex regular-faced polyhedron (i.e., the side faces are
also regular). An Archimedean solid is a convex regular-faced polyhedron composed
of regular polygons with the same type and order of regular polygons gathered at the
vertices, except Platonic solids, and Archimedean (anti)prisms. A Johnson solid is
a convex regular-faced polyhedron, except Platonic solids, Archimedean solids, and
Archimedean (anti)prisms. It is known that there are 92 Johnson solids [10].

Let P be a polyhedron. P can be viewed as a graph GP = (VP , EP ), where VP

is a set of vertices and EP is a set of edges of P . An unfolding (also called a net, a
development, or a general unfolding) of the polyhedron P is a flat polygon formed by
cutting P ’s edges or faces and unfolding it into a plane. An edge unfolding of P is
an unfolding formed by cutting only edges. We have the following lemma for an edge
unfolding of P .

Lemma 1 (see e.g., [4], Lemma 22.1.1). The cut edges of an edge unfolding of P form

7
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a spanning tree of GP .

This lemma implies that a spanning tree of GP corresponds to an edge unfolding of
P . Two faces in P are neighbors if they contain a common edge. A dual graph of P is
a graph where each vertex of the dual graph corresponds to a face in the polyhedron,
and two vertices are adjacent if and only if the corresponding two faces are neighbors.
A spanning tree of the dual graph of P can also be considered an edge unfolding [13].

The following proposition is used to determine whether an edge unfolding of a
polyhedron P is overlapping.

Proposition 1 ([8]). If for any two faces in an edge unfolding, the circumscribed circles
of the two faces do not overlap, then the edge unfolding is not overlapping.

This proposition is useful for efficiently checking the overlapping of an edge unfold-
ing, and it is a necessary condition for overlapping edge unfoldings. If the circumscribed
circles of two faces of P intersect, we use numerical calculations to check the overlap-
ping.



Chapter 3

Rotational unfolding

In this section, we propose an algorithm for detecting overlapping edge unfoldings for
a polyhedron P . A spanning tree T (U) of a dual graph D(P ) of P represents an edge
unfolding U . We can determine all overlapping edge unfoldings by enumerating all
spanning trees of D(P ) and then check the overlapping of the corresponding unfold-
ings. However, a polyhedron generally contains a large number of spanning trees. Our
algorithm employs Lemma 2 to enumerate the paths rather than the spanning trees to
efficiently search for overlapping edge unfoldings.

Lemma 2 ( [5,7]). Let U be an overlapping edge unfolding of a polyhedron P , and T (U)
be a spanning tree corresponding to U of the dual graph D(P ). There exist two vertices
v, v′ ∈ T (U) such that a path from v to v′ in T (U) represents a consecutive sequence of
faces in U with overlapping the two faces corresponding to v and v′.

For a polyhedron P , we present a simple and recursive procedure called rotational
unfolding to find paths and check their overlap. In this procedure, we first place P in
the plane. The start face fs of P is the bottom face. We rotate P and unfold the current
bottom in the rotational unfolding. Let fℓ be the current bottom face, called the last
face. In the first step of the procedure, fℓ is the start face fs. The rotational unfolding
first checks whether there exists a neighbor face of fℓ in P . Then, for each neighbor
face f , we run the following three steps: we cut the edges of fℓ except for the edge
sharing f , roll the polyhedron P to be the bottom f , and check the overlap between
fs and f . To check the overlapping of edge unfoldings, we compute the coordinate of
the outer center of f from that of fℓ and the angle of the shared edge. Then, we check
the overlap between fs and f using Proposition 1 or numerical calculations. Let vfs
and vf be the vertices corresponding to the face fs and f of D(P ), respectively. If fs
and f overlap, we output a part of edge unfolding corresponding to a path from vfs to
vf . Otherwise, we run the procedure recursively. Figure 3.1 illustrates the rotational
unfolding procedure.

Although the number of paths is smaller than that of spanning trees, it is still large.
To reduce the search space, we implement three methods for speeding up the search.

9
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Plane Plane

Plane Plane

Plane Plane

Figure 3.1: Illustration of rotational unfolding.

The first method uses the simple distance property. Let D be the Euclidean distance
between the outer center of fs and that of f , rs and r be the circumscribed circle radii
of fs and f , respectively, and W be the sum of circumscribed circle diameters of the
remaining faces in P . For fs and a face in P to overlap, the distance between fs and f
have to be smaller than W ; that is, if W + rs + r < D, fs does not overlap any other
faces in P for any unfolding because fs is too far from the other faces in P . Thus, if
W + rs + r < D, we prune the search.

The second method uses the symmetry of the polyhedron. Figure 3.2 shows a
symmetric edge unfolding. If a polyhedron has such symmetric unfoldings, we only
compute one of them to check if a self-overlapping edge unfolding exists. To implement
this pruning, we maintain the y-coordinate of the outer center of the last face before it
becomes non-zero. We prune the search if the y-coordinate becomes negative for the
first time. Note that, this pruning does not work for a snub cube, a snub dodecahedron
and Johnson solids because they do not have a mirror symmetry.

In the third method, we run the rotational unfolding by fixing a few steps of the
search. In the algorithm, we first choose a start face. We only need to consider restricted
patterns of the first few faces of polyhedrons. For example, in the case of a truncated
tetrahedron, which consists of regular triangles and regular hexagons, as shown in
Figure 3.3, we only consider three patterns of the start and next face pairs: (a) a
triangle and a hexagon, (b) a hexagon and a triangle, and (c) a hexagon and a hexagon.
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(a) (b)

Figure 3.2: (a) and (b) are symmetric with respect to the x−axis.

(a) (b) (c)

Figure 3.3: Cases of the first two faces in the rotational unfolding.

We find paths from these patterns as start faces. Note that we cannot consider only the
first face shape to find the patterns. For example, both of the start faces of Figure 3.4
(a) and (b) are squares; however, we need to consider both cases because the remaining
polyhedrons are not isomorphic. Thus, for each polyhedron shape, we have to find start
patterns based on symmetry.
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(a) (b)

Figure 3.4: Cases of the first three faces in the rotational unfolding for a rhombitrun-
cated cuboctahedron.



Chapter 4

Archimedean and Johnson solids

We implemented rotational unfolding in C++ and adapted it to Archimedean solids
and Johnson solids to find their overlapping edge unfoldings 1. We obtain the following
theorems from our experiments.

Theorem 1 (Archimedean solids).

(a) An icosidodecahedron and a rhombitruncated cuboctahedron have no overlapping
edge unfoldings.

(b) A snub cube has three types of overlapping unfoldings with two vertices of faces
in contact, as shown in Figure 1.3.

Theorem 2 (Johnson solids).

(a) 48 Johnson solids shown in Table 1.2 have no overlapping edge unfoldings.

(b) 44 Johnson solids shown in Table 1.2 have overlapping edge unfoldings, as shown
in Appendix A Figure A.1 ∼ A.44.

An overlapping edge unfolding exists for a truncated dodecahedron and a truncated
icosahedron [8]. Our algorithm finds the other overlapping unfoldings for truncated
icosahedron, as shown in, and we verify that it has no other types of overlapping edge
unfoldings. For the 20 Johnson solids, we enumerate overlapping patterns, as shown in
Appendix A. We find edge unfoldings with two vertices of faces in contact (Figure A.14,
A.15, A.19, A.20, A.21, A.22, A.27, A.28), two edges of faces in contact (Figure A.27,
A.28), or a vertex of one face and an edge of the other edge in contact (Figure A.2,
A.27, A.28) in Johnson solids.

1Johnson Solid image files and adjacency list data were used as published in https://mitani.cs.

tsukuba.ac.jp/polyhedron/data/polyhedron.zip.
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Chapter 5

Archimedean prisms

In this section, we prove Theorem 3.

Theorem 3 (Archimedean prisms). Let n be a natural number and PR(n) be an n-gonal
Archimedean prism.

(a) If 3 ≤ n ≤ 23, PR(n) has no overlapping edge unfoldings.

(b) For n ≥ 24, there exists an overlapping edge unfolding in PR(n).

We demonstrate the case of no overlapping edge unfolding of Theorem 3 (a) for
every n ∈ {3, . . . , 23} of PR(n) using rotational unfolding.

Theorem 3 (b) can be proven by constructing an overlapping edge unfolding for
PR(n). Let FT and FB be the top and bottom faces of PR(n), respectively, and
f0, · · · , fn−1 be the sides, which are numbered counterclockwise viewing from the top
face FT . For i ∈ {0, . . . , n − 1}, let ti and bi be vertices on FT and FB such that they
share two faces fi and fi+1, where fn = f0. For n = 24, PR(n) has an overlapping edge
unfolding, as shown in Figure 1.5 (a) (right), consisting of faces {FB, f0, FT , f3, f2, f1}
obtained by cutting along the thick line of PR(n), as shown in Figure 1.5 (a) (left). For
25 ≤ n ≤ 28, PR(n) has an overlapping edge unfolding similar to PR(24), as shown in
Figure 5.1.

It remains to be shown that an overlapping edge unfolding of PR(n) exists for n ≥ 29.
We prove that the edge unfolding consisting of faces {FB, f0, FT , f2, f1} overlap, as
shown in Figure 5.2 (right), by cutting along the thick line of PR(n) shown in Figure 5.2
(left).

Lemma 3. For n ≥ 29, if we cut the edges (t0, t1), (t0, b0), (b0, b1), and (b1, b2) and do
not cut (tn−1, t0), (bn−1, b0), and (t1, t2) of PR(n), any edge unfolding is overlapping.

Figure 5.3 shows a part of edge unfolding consisting of {FB, f0, FT , f2, f1}, and
Figure 5.4 is an enlarged and simplified image of Figure 5.3. We define tTi and bBi for
i ∈ {0, . . . , n− 1} as vertices on FT and FB in the edge unfolding such that they are ti

15



16

PR(25) PR(26)

PR(27) PR(28)

Figure 5.1: Overlapping edge unfoldings of PR(25) to PR(28) consisting of faces
{FB, f0, FT , f3, f2, f1}

and bi in PR(n), respectively. Let S be a subset of faces {f0, . . . , fn−1}. The vertices ti
and bi in PR(n) that are shared by S in the edge unfolding are denoted as tSi and bSi ,
respectively. Here, we set bf10 and bf1,f21 as (0, 0) and (0, 1) in the plane, respectively.
We can obtain the following lemma.

Lemma 4.

(i) Point bB0 exists in the third quadrant.

(ii) Point bB1 exists in the first quadrant.

(iii) Let p1 be an intersection point of the segment bB0 b
B
1 and the y-axis. The y-

coordinate of p1 is positive.

The y-coordinate of p1 is within (0,−1) to (0, 1) because the length of the line
segment bB0 b

B
1 is one if Lemma 4 (i) and (ii) are satisfied. And if the y-coordinate of p1

is positive, the line segment bf10 bf1,f21 intersects the line segment bB0 b
B
1 . Therefore, the

faces f1 and FB overlap if Lemma 4 are satisfied.
We will show that Lemma 4 are satisfied. We define the angle θ = 2π

n
as the exterior

angle of the regular n-sided polygon. The range of θ is 0 < θ ≤ 2π
29

because n ≥ 29. We
make the following claim.
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Figure 5.2: An overlapping edge unfolding in the 29-gonal Archimedean prism. The
right edge unfolding is obtained by cutting along the thick line of the left convex poly-
hedron.

Figure 5.3: Magnified image of overlapping areas in the edge unfolding of PR(n)

Claim 1. The coordinates of bB0 and bB1 are (−1− sin θ+ cos 2θ, 1− cos θ− sin 2θ) and
(−1− sin θ + cos 2θ + sin 3θ, 1− cos θ − sin 2θ + cos 3θ), respectively.

Proof. (The coordinates of bB0 ) Let p3 be the intersection point of the perpendicular
line from point tT1 to the x-axis and the perpendicular line from point tT0 to the y-axis.
The coordinate of point tT0 is (−1−sin θ, 1−cos θ) since △tT1 p3t

T
0 is a right triangle with

an oblique side of length 1. Let p4 be the intersection point of the auxiliary line drawn
parallel to the y-axis with respect to point tT0 and the auxiliary line extending the line
segment bf1,f21 tT1 in the direction of tT1 , p5 be the intersection point of the auxiliary line
drawn perpendicular to the line segment tT0 b

B
0 at point tT0 and the line segment tT1 p3,

and p6 be the intersection point of the perpendicular line from point bB0 to the x-axis
and the perpendicular line from point tT0 to the y-axis. ∠p4tT0 tT1 is θ since tT0 p4//p3t

T
1 ,

∠p5tT0 tT1 is θ since it is the exterior angle of FT , ∠p5tT0 p3 is π
2
−2θ since ∠p4tT0 p3 is a right

angle, and ∠p6tT0 bB0 is 2θ since ∠p5tT0 bB0 is a right angle. As a result, the coordinate of
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Figure 5.4: Enlarged and simplified image of Figure 5.3

point bB0 is (−1− sin θ+cos 2θ, 1− cos θ− sin 2θ) since △p6t
T
0 b

B
0 is a right triangle with

an oblique side of length 1.
(The coordinates of bB1 ) Let p7 be the intersection point of the perpendicular

line from point bB0 to the x-axis and the perpendicular line from point bB1 to the y-axis,
and p8 be the intersection point of the auxiliary line drawn perpendicular to the line
segment tT0 b

B
0 at point bB0 and the y-axis. ∠p8bB0 bB1 is θ since it is the exterior angle of

FT , ∠p6bB0 tT0 is π
2
−2θ since △bB0 p6t

T
0 is a right triangle, ∠p8bB0 p7(= ∠p8bB0 p6) is 2θ since

∠p8bB0 tT0 is a right angle, and ∠p7bB0 bB1 is 3θ by adding ∠p8bB0 bB1 and ∠p8bB0 p7. As a
result, the coordinate of point bB1 is (−1−sin θ+cos 2θ+sin 3θ, 1−cos θ−sin 2θ+cos 3θ)
since △bB0 p7b

B
1 is a right triangle with an oblique side of length 1.

From Claim 1 and differential analysis, we can show Lemma 4 (i) - (iii).

Proof of Lemma 4. (i). For point p, the x and y coordinates are denoted as x(p) and
y(p), respectively. For x(bB0 ), we obtain the following inequality since − sin θ < − sin 0,
cos 2θ < cos 0 from the range of θ.

x(bB0 ) = −1− sin θ + cos 2θ < −1− sin 0 + cos 0 = 0

For y(bB0 ), differentiating y(bB0 (θ)) = 1− cos θ − sin 2θ, yields:

d

dθ
y(bB0 (θ)) = −2 cos 2θ + sin θ = 4

(
sin θ +

1

8

)2

− 33

16

Solving d
dθ
y(bB0 (θ)) = 0 for θ yields the following:

θ = arcsin

(
−1±

√
33

8

)
+ 2nπ (n ∈ N)
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The definition range for θ is contained between arcsin
(

−1−
√
33

8

)
and arcsin

(
−1+

√
33

8

)
.

y(bB0 (θ)) is a monotonically decreasing function in the definition range of θ since the

relation arcsin
(

−1−
√
33

8

)
< 0 < arcsin

(
−1+

√
33

8

)
holds and d

dθ
y(bB0 (0)) = −2. Hence,

the following equation holds since y(bB0 (0)) = 0.

y(bB0 ) = 1− cos θ − sin 2θ < 0

Thus, bB0 is in the third quadrant.
(ii). For x(bB1 ), differentiating x(bB1 (θ)) = −1− sin θ + cos 2θ + sin 3θ, yields:

d

dθ
x(bB1 (θ)) =

d

dθ
(− sin2 θ − cos2 θ − sin θ + cos2 θ − sin2 θ + 3 sin θ − 4 sin3 θ)

=
d

dθ
(2 sin θ − 4 sin3 θ − 2 sin2 θ)

= 2 cos θ(1− 6 sin2 θ − 2 sin θ)

x(bB1 (θ)) is a monotonically increasing function in the definition range of θ since−6 sin θ ≥
−6
(
sin 2π

29

)2
, and −2 sin θ ≥ −2 sin 2π

29
. Hence, the following equation holds since

x(bB1 (0)) = 0.
x(bB1 ) = −1− sin θ + cos 2θ + sin 3θ > 0

For y(bB1 ), we obtain the following inequality since − cos θ > − cos 0, − sin 2θ ≥ − sin 4π
29
,

and cos 3θ ≥ cos 6π
29

from the range of θ.

y(bB1 ) = 1− cos θ − sin 2θ + cos 3θ > 1− cos 0− sin
4π

29
+ cos

6π

29
> 0

Thus, bB1 is in the first quadrant.
(iii). Let p2 be an intersection point of the perpendicular line from point bB0 to the

y-axis and y-axis; that is, the coordinates of p2 are (0, 1− cos θ − sin 2θ). We give the
following claim.

Claim 2. The length of the line segment p2p1 is greater than that of p2b
f1
0 .

The length of the line segment bB0 p2 is not zero because of the condition (i); therefore,

we will show
p2b

f1
0

bB0 p2
is larger than p2p1

bB0 p2
.

p2b
f1
0

bB0 p2
and p2p1

bB0 p2
can be denoted as follows:

p2b
f1
0

bB0 p2
=

−1 + cos θ + sin 2θ

1 + sin θ − cos 2θ
,

p2p1
bB0 p2

=
cos 3θ

sin 3θ

Therefore, we can show that the following equation holds.

−1 + cos θ + sin 2θ

1 + sin θ − cos 2θ
<

cos 3θ

sin 3θ
(5.1)
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The definition range of θ is 0 < θ ≤ 2π
29
; therefore, 1 + sin θ− cos 2θ > 0 and sin 3θ > 0.

Multiplying both sides of (5.1) by (1+ sin θ− cos 2θ) sin 3θ and expanding, resulting in
the following equation is obtained.

− sin 3θ + sin 3θ cos θ + sin 3θ sin 2θ − cos 3θ − cos 3θ sin θ + cos 3θ cos 2θ < 0

Let f(θ) = − sin 3θ − cos 3θ + sin 2θ + cos θ. The derivative of f(θ), yields:

f ′(θ) = −3 cos 3θ + 3 sin 3θ + 2 cos 2θ − sin θ

= (sin θ + cos θ)(6 sin 2θ + 2 cos θ − 2 sin θ − 3)− sin θ

Let f ′(θ) = g(θ)− sin θ. Differentiating g(θ), gives:

g′(θ) = 12 cos 2θ − 2 sin θ − 2 cos θ

= 2(sin θ + cos θ) (6 sin (θ + 3π/4)− 1) > 0

Hence, g(θ) is a monotonically increasing function that switches from negative to pos-
itive midway since g(0) < 0 and g

(
2π
29

)
> 0. Rigorous numerical calculations show a

negative to positive transition between n = 62 and n = 63. Therefore, for n ≥ 62,
f(θ) < 0 since f(θ) is a monotonically decreasing function and f(0) = 0. By contrast,

for 29 ≤ n ≤ 61, f(θ) < 0 from the numerical calculation of
p2b

f1
0

bB0 p2
and p2p1

bB0 p2
. Thus, the

length of the line segment p2p1 is greater than that of p2b
f1
0 .

Thus, Lemma 4 (i) - (iii) hold; that is, an overlapping edge unfolding exists for
PR(n), where n ≥ 29.



Chapter 6

Archimedean anti-prisms

In this section, we prove Theorem 4.

Theorem 4 (Archimedean anti-prisms). Let n be a natural number and PA(n) be an
n-gonal Archimedean antiprism.

(a) If 3 ≤ n ≤ 11, PA(n) has no overlapping edge unfoldings.

(b) For n ≥ 12, there exists an overlapping edge unfolding in PA(n).

We demonstrate the no overlapping edge unfolding of Theorem 4 (a) for every
n ∈ {3, . . . , 11} of PA(n) using rotational unfolding.

Theorem 4 (b) can be proven by constructing an overlapping edge unfolding for
PA(n). Let FT and FB be the top and bottom faces of PA(n), respectively, and
f0, · · · , f2n−1 be the sides, which are numbered counterclockwise viewing from the top
face FT . For i ∈ {0, . . . , n − 1}, let ti and bi be vertices on FT and FB such that they
share three faces f2i, f2i+1, and f2i+2 and f2i−1, f2i, and f2i+1, where f−1 = f2n−1 and
f2n = f0. For n = 12, PA(n) has an overlapping edge unfolding, as shown in Figure 1.5
(b) (right), consisting of faces {f3, FB, f5, f4, FT , f0, f1, f2} obtained by cutting along the
thick line of PA(n), as shown in Figure 1.5 (b) (left). For 13 ≤ n ≤ 16, PA(n) has an
overlapping edge unfolding similar to PA(12), as shown in Figure 6.1. For n ∈ {17, 18},
PA(n) has overlapping edge unfoldings consisting of faces {FT , f0, f1, FB, f5, f4, f3, f2},
as shown in Figure 6.2 (left), obtained by cutting along the thick line PA(n), as shown
in Figure 6.2 (right).

It remains to be shown that an overlapping edge unfolding of PA(n) exists for n ≥ 19.
We can prove that the edge unfolding consisting of faces {FB, f1, f2, FT , f4, f3} contains
overlapping, as shown in Figure 6.3 (right), by cutting along the thick line of PA(n), as
shown in Figure 6.3 (left).

Lemma 5. For n ≥ 19, if we cut the edges (t1, b1) and (b1, b2) and do not cut the edges
(b0, b1), (t0, t1), (t0, b1), (t1, t2), and (t1, b2) of PA(n), any edge unfolding is overlapping.

21



22

PA(13) PA(14)

PA(15) PA(16)

Figure 6.1: Overlapping edge unfoldings of PA(13) to PA(16) consisting of faces
{f3, FB, f5, f4, FT , f0, f1, f2}

Figure 6.4 shows a part of edge unfolding consisting of {FB, f1, f2, FT , f4, f3}, and
Figure 6.5 is an enlarged and simplified image of Figure 6.4. We define tTi and bBi for
i ∈ {0 · · ·n − 1} as vertices on FT and FB in the edge unfolding such that they are ti
and bi in PA(n), respectively. Let S be a subset of faces {f0, . . . , f2n−1}. The vertices
ti and bi are vertices in PA(n) that are shared by S in the edge unfolding are denoted
as tSi and bSi , respectively. Here, we set bf31 and tT1 as (0, 0) and (−1, 0) in the plane,
respectively. We can obtain the following lemma.

Lemma 6.

(i) Point bB1 exists in the third quadrant.

(ii) The y-coordinate of point bB2 is positive.

(iii) Let p1 be an intersection point of the segment bB1 b
B
2 and the x-axis. The x-

coordinate of point p1 is in −1 < p1 < 0.
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PA(17)

PA(18)

Figure 6.2: Overlapping edge unfoldings of PA(17) and PA(18), consisting of the set
of faces {FT , f0, f1, FB, f5, f4, f3, f2}. The right edge unfolding are obtained by cutting
along the thick line of the left convex polyhedron.

Face f3 is a triangle such that the bottom is (−1, 0) to (0, 0). From Lemma 6 (i)
and (ii), there exists an intersection point p1 of the segment the segment bB1 b

B
2 and the

x-axis. Moreover, if p1 is within (−1, 0) to (0, 0), the line segment bB1 b
B
2 intersects f3;

that is, f3 and FB overlap.
We define the angle θ = 2π

n
as the exterior angle of the regular n-sided polygon. The

range of θ is 0 < θ ≤ 2π
19

because n ≥ 19. We obtain the following claim.

Claim 3. The coordinate of bB1 is (−1 + cos θ,− sin θ), the coordinate of bB2 is{(
−1 + cos θ + sin

(
2θ − π

6

)
,− sin θ + cos

(
2θ − π

6

))
if 19 ≤ n ≤ 24(

−1 + cos θ − sin
(
π
6
− 2θ

)
,− sin θ + cos

(
π
6
− 2θ

))
if n ≥ 25

and the x-coordinate of p1 is{
cos
(
π
6
− θ
)
/ cos

(
2θ − π

6

)
− 1 if 19 ≤ n ≤ 24

cos
(
π
6
− θ
)
/ cos

(
π
6
− 2θ

)
− 1 if n ≥ 25.

Proof. (The coordinates of bB1 ) Let p2 be the intersection point of the perpendicular
line from point bB1 to the x-axis and x-axis, and p3 be the intersection point of the
auxiliary line extending the line segment tT2 t

T
1 in the tT1 direction and the line segment
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Figure 6.3: An overlapping edge unfolding in the 19-gonal Archimedean prism. We
obtain the right edge unfolding by cutting along the thick line of the left convex poly-
hedron.

tT0 b
B
1 . ∠p3tT1 bB1 is π

3
− θ since ∠tT0 tT1 bB1 is π

3
, and the ∠p2tT1 bB1 is θ since ∠p3tT1 p2 is π

3
.

As a result, the coordinate of point bB1 is (−1 + cos θ,− sin θ) since △tT1 p2b
B
1 is a right

triangle with an oblique side of length 1.

(The coordinates of bB2 ) The coordinates of point bB2 are divided into two cases
concerning the value of n. Let p4 be the intersection point of the perpendicular line
from point bB2 to the y-axis and the perpendicular line from point bB1 to the x-axis, p5
be the intersection point of the auxiliary line extending the line segment bB2 b

B
1 in the bB1

direction and the line segment tT0 b
B
0 , and p6 be the intersection point of the auxiliary

line extending the line segment bB0 b
B
1 in the bB1 direction and the x-axis.

(For 19 ≤ n ≤ 24) ∠tT0 bB1 p5 is π
3
− θ since ∠bB0 bB1 tT0 is the exterior angle of FB,

∠p2bB1 tT1 is π
2
−θ since △tT1 p2b

B
1 is a right triangle, and ∠bB2 bB1 p4 is 2θ− π

6
by subtracting

∠p5bB1 bB2 = π from (∠tT0 bB1 p5+∠tT1 bB1 tT0 +∠p2bB1 tT1 = (π
3
−θ)+ π

3
+(π

2
−θ) = 7π

6
−2θ). As a

result, the coordinate of point bB2 is
(
−1 + cos θ + sin

(
2θ − π

6

)
,− sin θ + cos

(
2θ − π

6

))
since △bB2 p4b

B
1 is a right triangle with an oblique side of length 1.

(For n ≥ 25) ∠tT1 bB1 bB2 is π
3
+ θ by adding ∠tT1 bB1 p6 = π

3
and ∠p6bB1 p2 = θ, and

∠bB2 bB1 p4 is π
6
−2θ by subtracting ∠p2bB1 tT1 from ∠tT1 bB1 bB2 . As a result, the coordinate of

point bB2 is
(
−1 + cos θ − sin

(
π
6
− 2θ

)
,− sin θ + cos

(
π
6
− 2θ

))
since △bB2 p4b

B
1 is a right

triangle with an oblique side of length 1.

(The coordinates of p1) The equation of the line with points bB1 and bB2 yields:

y(θ) =
y(bB2 )− y(bB1 )

x(bB2 )− x(bB1 )
(x− x(bB1 )) + y(bB1 ) =

cos
(
∠bB2 bB1 p4

)
sin (∠bB2 bB1 p4)

(x+ 1− cos θ)− sin θ

For point p, the x and y coordinates are denoted as x(p) and y(p), respectively. x(p1)
yields the following since y(p1) = 0.

x(p1) =
cos θ cos

(
∠bB2 bB1 p4

)
+ sin θ sin

(
∠bB2 bB1 p4

)
cos (∠bB2 bB1 p4)

− 1



CHAPTER 6. ARCHIMEDEAN ANTI-PRISMS 25

(a) The case for 19 ≤ n ≤ 24

(b) The case for n ≥ 25

Figure 6.4: Magnified image of overlapping areas in the edge unfolding of PA(n)

As a result, the x-coordinate of p1 is


cos (π

6
−θ)

cos (2θ−π
6 )

− 1 if 19 ≤ n ≤ 24

cos (π
6
−θ)

cos (π
6
−2θ)

− 1 if n ≥ 25

From Claim 3 and differential analysis, we can show Lemma 6 (i) - (iii).

Proof of Lemma 6. (i). For x(bB1 ), we obtain the following inequality since cos θ <
cos 0.

bB1x = −1 + cos θ < −1 + cos 0 = 0

For y(bB1 ), we obtain the following inequality since − sin θ < − sin θ.

bB1y = − sin θ < − sin 0 = 0

Thus, bB1 is in the third quadrant.
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(ii). (For 19 ≤ n ≤ 24) For y(bB2 ), we obtain the following inequality since − sin θ ≥
− sin 2π

19
, cos 2θ ≥ cos 4π

19
, and sin 2θ ≥ sin 4π

24
.

y(bB2 ) = − sin θ + cos
(
2θ − π

6

)
= − sin θ + cos 2θ cos

π

6
+ sin 2θ sin

π

6

≥ − sin
2π

19
+

√
3

2
cos

4π

19
+

1

2
sin

4π

24
> 0

Thus, y(bB2 ) is positive.
(For n ≥ 25) For y(bB2 ), we obtain the following inequality since − sin θ ≥ − sin 2π

25
,

cos 2θ ≥ cos 4π
25
, sin 2θ > sin 0.

y(bB2 ) = − sin θ + cos
(π
6
− 2θ

)
= − sin θ + cos

π

6
cos 2θ + sin

π

6
sin 2θ

> − sin
2π

25
+

√
3

2
cos

4π

25
> 0

Thus, y(bB2 ) is positive.

(iii). (For 19 ≤ n ≤ 24) First, we prove x(p1) > −1, that is,
cos (π

6
−θ)

cos (2θ−π
6 )

> 0. For

π
12

≤ θ ≤ 2π
19
, we obtain the following:

• cos
(
π
6
− θ
)
is a monotonically increasing function, and cos

(
π
6
− π

12

)
> 0.

• cos
(
2θ − π

6

)
is monotonically decreasing function, and cos

(
2× 2π

19
− π

6

)
> 0.

As a result, cos
(
π
6
− θ
)
> 0 and cos

(
2θ − π

6

)
> 0, that is,

cos (π
6
−θ)

cos (2θ−π
6 )

> 0. Thus,

x(p1) > −1.

Next, we prove x(p1) < 0, that is,
cos (π

6
−θ)

cos (2θ−π
6 )

< 1. For π
12

≤ θ ≤ 2π
19
, we obtain the

following:

• cos
(
π
6
− θ
)
is a monotonically increasing function, and cos

(
2θ − π

6

)
is a mono-

tonically decreasing function.

• cos
(
2× π

12
− π

6

)
> cos

(
π
6
− π

12

)
and cos

(
2× 2π

19
− π

6

)
> cos

(
π
6
− 2π

19

)
As a result, cos

(
2θ − π

6

)
is larger than cos

(
π
6
− θ
)
, that is

cos (π
6
−θ)

cos (2θ−π
6 )

< 1. Thus, we

have x(p1) < 0.

(For n ≥ 25) First, we prove x(p1) > −1, that is,
cos (π

6
−θ)

cos (π
6
−2θ)

> 0. For 0 < θ ≤ 2π
25
,

we obtain the following:

• cos
(
π
6
− θ
)
is a monotonically increasing function, and cos

(
π
6

)
> 0.

• cos
(
π
6
− 2θ

)
is a monotonically increasing function and cos

(
π
6

)
> 0
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Thus, cos
(
π
6
− θ
)
> 0 and cos

(
π
6
− 2θ

)
> 0, that is, x(p1) > −1.

Next, we prove x(p1) < 0, that is,
cos (π

6
−θ)

cos (π
6
−2θ)

< 1. For 0 < θ ≤ 2π
25
, we obtain the

following:

• cos
(
π
6
− θ
)
is a monotonically increasing function, and cos

(
π
6
− 2θ

)
is a mono-

tonically increasing function.

• cos
(
2× 0− π

6

)
= cos

(
0− π

6

)
and cos

(
2× 2π

25
− π

6

)
> cos

(
2π
25

− π
6

)
As a result, cos

(
π
6
− 2θ

)
is larger than cos

(
π
6
− θ
)
, that is

cos (π
6
−θ)

cos (π
6
−2θ)

< 1. Thus, we

have x(p1) < 0.

Thus, Lemma 6 (i) - (iii) hold; that is, an overlapping edge unfolding exists for
PA(n), where n ≥ 19.
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(a) The case for 19 ≤ n ≤ 24

(b) The case for n ≥ 25

Figure 6.5: Enlarged and simplified image of Figure 6.4
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Appendix A

Reference drawings

Figure A.1: Overlapping edge unfoldings in an elongated pentagonal cupola (J20). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.1: Overlapping edge unfoldings in an elongated pentagonal cupola (J20). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)

Figure A.2: Overlapping edge unfoldings in an elongated pentagonal rotunda (J21).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.2: Overlapping edge unfoldings in an elongated pentagonal rotunda (J21).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)
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Figure A.2: Overlapping edge unfoldings in an elongated pentagonal rotunda (J21).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)

Figure A.3: Overlapping edge unfoldings in a gyroelongated pentagonal cupola (J24).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.3: Overlapping edge unfoldings in a gyroelongated pentagonal cupola (J24).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)
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Figure A.4: An overlapping edge unfolding in a gyroelongated pentagonal rotunda
(J25). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons.

Figure A.5: Overlapping edge unfoldings in a pentagonal orthocupolarotunda (J32).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.

Figure A.6: Overlapping edge unfoldings in a pentagonal gyrocupolarotunda (J33).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.6: Overlapping edge unfoldings in a pentagonal gyrocupolarotunda (J33).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)

Figure A.7: Overlapping edge unfoldings in a pentagonal orthobirotunda (J34). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.

Figure A.8: Overlapping edge unfoldings in an elongated pentagonal gyrobicupola
(J38). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.8: Overlapping edge unfoldings in an elongated pentagonal gyrobicupola
(J38). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons. It has no other types of overlapping edge unfoldings. (continue)

Figure A.9: Overlapping edge unfoldings in an elongated pentagonal gyrobicupola
(J39). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.9: Overlapping edge unfoldings in an elongated pentagonal gyrobicupola
(J39). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons. It has no other types of overlapping edge unfoldings. (continue)

Figure A.10: An verlapping edge unfolding in an elongated pentagonal orthocupolaro-
tunda (J40). The right edge unfoldings are obtained by cutting along the thick line of
the left convex polyhedrons.
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Figure A.11: An verlapping edge unfolding in an elongated pentagonal gyrocupolaro-
tunda (J41). The right edge unfoldings are obtained by cutting along the thick line of
the left convex polyhedrons.

Figure A.12: An verlapping edge unfolding in an elongated pentagonal orthobirotunda
(J42). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons.

Figure A.13: An overlapping edge unfoldings in an elongated pentagonal gyrobirotunda
(J43). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons.
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Figure A.14: Overlapping edge unfoldings in a gyroelongated triangular bicupola (J44).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.15: Overlapping edge unfoldings in a gyroelongated square bicupola (J45).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.15: Overlapping edge unfoldings in a gyroelongated square bicupola (J45).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)

Figure A.16: An overlapping edge unfoldings in a gyroelongated pentagonal bicupola
(J46). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons.

Figure A.17: An overlapping edge unfoldings in a gyroelongated pentagonal cupolaro-
tunda (J47). The right edge unfoldings are obtained by cutting along the thick line of
the left convex polyhedrons.
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Figure A.18: An overlapping edge unfoldings in a gyroelongated pentagonal birotunda
(J48). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons.

Figure A.19: An verlapping edge unfolding in an augmented hexagonal prism (J54).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.

Figure A.20: An verlapping edge unfolding in a parabiaugmented hexagonal prism
(J55). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.21: An verlapping edge unfolding in a metabiaugmented hexagonal prism
(J56). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons. It has no other types of overlapping edge unfoldings.

Figure A.22: An verlapping edge unfolding in a triaugmented hexagonal prism (J57).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.

Figure A.23: An verlapping edge unfolding in an augmented dodecahedron (J58). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.

Figure A.24: An verlapping edge unfolding in a parabiaugmented dodecahedron (J59).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.25: An verlapping edge unfolding in a metabiaugmented dodecahedron (J60).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.

Figure A.26: An verlapping edge unfolding in a triaugmented dodecahedron (J61).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.

Figure A.27: Overlapping edge unfoldings in an augmented truncated cube (J66). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.27: Overlapping edge unfoldings in an augmented truncated cube (J66). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)
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Figure A.27: Overlapping edge unfoldings in an augmented truncated cube (J66). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)
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Figure A.27: Overlapping edge unfoldings in an augmented truncated cube (J66). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)
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Figure A.27: Overlapping edge unfoldings in an augmented truncated cube (J66). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)

Figure A.28: Overlapping edge unfoldings in a biaugmented truncated cube (J67). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings.
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Figure A.28: Overlapping edge unfoldings in a biaugmented truncated cube (J67). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)
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Figure A.28: Overlapping edge unfoldings in a biaugmented truncated cube (J67). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)
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Figure A.28: Overlapping edge unfoldings in a biaugmented truncated cube (J67). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)
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Figure A.28: Overlapping edge unfoldings in a biaugmented truncated cube (J67). The
right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons. It has no other types of overlapping edge unfoldings. (continue)

Figure A.29: An overlapping edge unfoldings in an augmented truncated dodecahedron
(J68). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons.

Figure A.30: An overlapping edge unfoldings in a parabiaugmented truncated dodeca-
hedron (J69). The right edge unfoldings are obtained by cutting along the thick line of
the left convex polyhedrons.
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Figure A.31: An overlapping edge unfoldings in a metabiaugmented truncated dodec-
ahedron (J70). The right edge unfoldings are obtained by cutting along the thick line
of the left convex polyhedrons.

Figure A.32: An overlapping edge unfoldings in a triaugmented truncated dodecahedron
(J71). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons.

Figure A.33: An overlapping edge unfoldings in a gyrate rhombicosidodecahedron (J72).
The right edge unfoldings are obtained by cutting along the thick line of the left convex
polyhedrons.
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Figure A.34: An overlapping edge unfoldings in a parabigyrate rhombicosidodecahedron
(J73). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons.

Figure A.35: An overlapping edge unfoldings in a metabigyrate rhombicosidodecahe-
dron (J74). The right edge unfoldings are obtained by cutting along the thick line of
the left convex polyhedrons.

Figure A.36: An overlapping edge unfoldings in a trigyrate rhombicosidodecahedron
(J75). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons.

Figure A.37: An overlapping edge unfoldings in a diminished rhombicosidodecahedron
(J76). The right edge unfoldings are obtained by cutting along the thick line of the left
convex polyhedrons.
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Figure A.38: An overlapping edge unfoldings in a paragyrate diminished rhombicosi-
dodecahedron (J77). The right edge unfoldings are obtained by cutting along the thick
line of the left convex polyhedrons.

Figure A.39: An overlapping edge unfoldings in a metagyrate diminished rhombicosi-
dodecahedron (J78). The right edge unfoldings are obtained by cutting along the thick
line of the left convex polyhedrons.

Figure A.40: An overlapping edge unfoldings in a bigyrate diminished rhombicosido-
decahedron (J79). The right edge unfoldings are obtained by cutting along the thick
line of the left convex polyhedrons.

Figure A.41: An overlapping edge unfoldings in a parabidiminished rhombicosidodeca-
hedron (J80). The right edge unfoldings are obtained by cutting along the thick line of
the left convex polyhedrons.
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Figure A.42: An overlapping edge unfoldings in a metabidiminished rhombicosidodec-
ahedron (J81). The right edge unfoldings are obtained by cutting along the thick line
of the left convex polyhedrons.

Figure A.43: An overlapping edge unfoldings in a gyrate bidiminished rhombicosido-
decahedron (J82). The right edge unfoldings are obtained by cutting along the thick
line of the left convex polyhedrons.

Figure A.44: An overlapping edge unfoldings in a tridiminished rhombicosidodecahe-
dron (J83). The right edge unfoldings are obtained by cutting along the thick line of
the left convex polyhedrons.
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