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Edge unfoldings
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(a) Edge unfolding (b) Not edge unfolding

Definition 1 [R. Uehara, 2018]
An edge unfolding of the polyhedron is a flat polygon formed
by cutting its edges and unfolding it into a plane.

Cutting along the thick line of each left cube …
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Platonic solid Archimedean solid

Convex regular-faced polyhedra
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Definition 2
Convex regular-faced polyhedra are convex polyhedra with
all faces are regular polygons.
Categorized into 5 classes

Archimedean prism Archimedean antiprism Johnson solid



Overlapping edge unfoldings
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Overlapping edge unfoldings exist in some convex polyhedra.

Truncated dodecahedron
[T. Horiyama and W. Shoji, 2011]

Truncated icosahedron
[T. Horiyama and W. Shoji, 2011]

12-gonal prism
[Schlickenrieder, 1997]

15-gonal prism
[Schlickenrieder, 1997]



Convex regular-faced
polyhedra Is there an overlapping edge unfolding?

Platonic solids
(Total 5 types) No [T. Horiyama and W. Shoji, 2011]

Archimedean solids
(Total 13 types)

Yes (5 types) [T. Horiyama and W. Shoji, 2011]
No (5 types) [Hirose, 2015]
Open Problem (3 types)

𝑛-gonal Archimedean
prisms ( 𝑛 ≥ 3 ) Open Problem

𝑛-gonal Archimedean
antiprisms ( 𝑛 ≥ 3 ) Open Problem

Johnson solids
(Total 92 types) Open Problem

Background and our results

5

Investigate: convex regular-faced polyhedra



Convex regular-faced
polyhedra Is there an overlapping edge unfolding?

Platonic solids
(Total 5 types) No [T. Horiyama and W. Shoji, 2011]

Archimedean solids
(Total 13 types)

Yes (5 types) [T. Horiyama and W. Shoji, 2011]
No (5 types) [Hirose, 2015]
No (2 types), Yes (1 type)

𝑛-gonal Archimedean
prisms ( 𝑛 ≥ 3 )

No (𝟑 ≤ 𝒏 ≤ 𝟐𝟑)
Yes  (𝒏 ≥ 𝟐𝟒)__

𝑛-gonal Archimedean
antiprisms ( 𝑛 ≥ 3 )

No (𝟑 ≤ 𝒏 ≤ 𝟏𝟏)
Yes  (𝒏 ≥ 𝟏𝟐) _

Johnson solids
(Total 92 types)

No (48 types)_
Yes (44 types)_

Background and our results

5

Investigate: convex regular-faced polyhedra



Truncated 
tetrahedron

Truncated 
hexahedron

Truncated 
octahedron Cuboctahedron Rhombi

cuboctahedron Icosidodecahedron Rhombitruncated 
cuboctahedron

Our results in Archimedean solids

6

Theorem 1
1. An icosidodecahedron and a rhombitruncated

cuboctahedron have no overlapping edge unfoldings.
2. A snub cube has overlapping edge unfoldings.

Truncated 
dodecahedron

Truncated 
icosahedron

Rhombicosidode
cahedron

Rhombitruncated 
icosidodecahedron

Snub 
dodecahedron Snub cube

No exist

Exist

Open
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2. A snub cube has overlapping edge unfoldings.

Truncated 
dodecahedron

Truncated 
icosahedron

Rhombicosidode
cahedron

Rhombitruncated 
icosidodecahedron

Snub 
dodecahedron Snub cube

Truncated 
tetrahedron

Truncated 
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Truncated 
octahedron Cuboctahedron Rhombi

cuboctahedron Icosidodecahedron Rhombitruncated 
cuboctahedron

New results



Our results in Archimedean prisms 
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Theorem 2
1. Overlapping edge unfoldings do not exist for 𝑛-gonal

Archimedean prisms for 3 ≤ 𝑛 ≤ 23.
2. Overlapping edge unfoldings exist in 𝑛-gonal Archimedean

prisms for 𝑛 ≥ 24.

An overlapping edge unfolding in a 24-gonal Archimedean prism



Our results in Archimedean antiprisms 
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Theorem 3
1. Overlapping edge unfoldings do not exist for 𝑛 -gonal

Archimedean antiprisms for 3 ≤ 𝑛 ≤ 11.
2. Overlapping edge unfoldings exist in 𝑛-gonal Archimedean

antiprisms for 𝑛 ≥ 12.

An overlapping edge unfolding in a 12-gonal Archimedean antiprism



Our Results in Johnson solids
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1. 48 Johnson solids do not have overlapping edge unfoldings.
2. 44 Johnson solids have overlapping edge unfoldings.

Theorem 4

* Johnson Solid image files were used as published in https://mitani.cs.tsukuba.ac.jp/polyhedron/data/polyhedron.zip

Open (92 types)

https://mitani.cs.tsukuba.ac.jp/polyhedron/data/polyhedron.zip


Our Results in Johnson solids
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1. 48 Johnson solids do not have overlapping edge unfoldings.
2. 44 Johnson solids have overlapping edge unfoldings.

Theorem 4

* Johnson Solid image files were used as published in https://mitani.cs.tsukuba.ac.jp/polyhedron/data/polyhedron.zip

No exist (48 types) Exist (44 types)

https://mitani.cs.tsukuba.ac.jp/polyhedron/data/polyhedron.zip


Algorithm by T. Horiyama and W. Shoji
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1. Enumerate the edge unfoldings of a polyhedron.
2. Check the overlapping for each unfolding.

Procedure [T. Horiyama and W. Shoji, 2011]

(Ex.) Hexahedron (The number of edge unfoldings = 11)

(1) (2) (3) (4)

…

(11)(10)(9)
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If we use [T. Horiyama and W. Shoji, 2011] algorithm…

①

Truncated icosahedron

The number of edge unfoldings ≈ 3×10!"

➡ 100 years to check! 
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If we use [T. Horiyama and W. Shoji, 2011] algorithm…

①

Truncated icosahedron

The number of edge unfoldings ≈ 3×10!"

➡ 100 years to check! 

Ø The number of edge unfoldings is too huge.
➡ Cannot check the overlapping in a realistic time. 

②

(1) (2) (3) (4)

Ø Checking the same pair of faces repeatedly.



Our algorithm
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Rotational Unfolding
1. Enumerating the path between any two faces by rolling a

polyhedron in a “Koro Koro” approach.
2. Checking the overlap of both end-faces of a path.
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Rotational Unfolding
1. Enumerating the path between any two faces by rolling a

polyhedron in a “Koro Koro” approach.
2. Checking the overlap of both end-faces of a path.

Plane

Q. Why only check the overlap of both end-faces in the path?



Our algorithm

13

[T. Horiyama and W. Shoji, 2011] Proposed

!𝐶" = 15 ways 6 ways

The path in the edge unfolding that connects two faces is one
of the paths enumerated by rotational unfolding.

Lemma 1
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[T. Horiyama and W. Shoji, 2011] Proposed

!𝐶" = 15 ways 6 ways

The path in the edge unfolding that connects two faces is one
of the paths enumerated by rotational unfolding.

Lemma 1

Only check the both end-faces in the path.
➡ The other pair of faces is already checked.



Ideas for more speed up
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If the distance between the two end faces of a path is too far,
we prune the search.

Polyhedron

=
+

𝑓𝑓/

Remaining
faces

Path

Method 1
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If the distance between the two end faces of a path is too far,
we prune the search.

Polyhedron

=
+

𝑓𝑓/

Remaining
faces

Path

𝐷𝑟! 𝑟

𝑊

If 𝑊 < 𝐷 − 𝑟$ − 𝑟, 𝑓$ does not overlap.

Method 1



Ideas for more speed up
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If a polyhedron has symmetric unfoldings, we only compute
one of them.

Method 2

Symmetric

𝑂

𝑦

𝑥
𝑂 𝑦

𝑦 < 0

𝑦 > 0

The 𝑦-coordinate becomes … 
① Non-zero for the first time ② Negative ➡ Prune the search



Ideas for more speed up
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If a polyhedron has symmetric unfoldings, we only compute
one of them.

Method 2

Symmetric

𝑂

𝑦

𝑥
𝑂 𝑦

𝑦 < 0

𝑦 > 0

The 𝑦-coordinate becomes … 
① Non-zero for the first time ② Negative ➡ Prune the search
Note : This pruning does not work for non-symmetry polyhedron.

(Ex.) Snub cube, Snub dodecahedron and Johnson solids 
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Fully proved the existence!



Proof of Theorem 2
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2. Overlapping edge unfoldings exist in 𝑛-gonal Archimedean
prisms for 𝑛 ≥ 24.

An overlapping edge unfolding in a 24-gonal Archimedean prism

Proof. 

Theorem 2 (Restated)
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2. Overlapping edge unfoldings exist in 𝑛-gonal Archimedean
prisms for 𝑛 ≥ 24.

An overlapping edge unfolding in a 24-gonal Archimedean prism

Proof. : Cutting edges

: Non-cutting edges

Theorem 2 (Restated)



Proof of Theorem 2
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Proof (continued).
Ø Cutting edges / Non-cutting edges be the same as 𝑛 = 24

25-gonal Archimedean prism 26-gonal Archimedean prism

28-gonal Archimedean prism27-gonal Archimedean prism



Proof of Theorem 2
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Proof (continued).

An overlapping edge unfolding in a 29-gonal Archimedean prism
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Proof (continued).

An overlapping edge unfolding in a 29-gonal Archimedean prism

: Cutting edges

: Non-cutting edges
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Proof (continued).

An overlapping edge unfolding in a 29-gonal Archimedean prism

Overlapping edge unfoldings exist in 𝑛-gonal Archimedean
prisms for 𝑛 ≥ 29.

Lemma 2

Cutting / non-cutting edges be the same as 𝑛 = 29. ∎

: Cutting edges

: Non-cutting edges



Proof of Theorem 3
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2. Overlapping edge unfoldings exist in 𝑛-gonal Archimedean
antiprisms for 𝑛 ≥ 12.

Proof. 

An overlapping edge unfolding in a 12-gonal Archimedean antiprism

Theorem 3 (Restated)



Proof of Theorem 3
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2. Overlapping edge unfoldings exist in 𝑛-gonal Archimedean
antiprisms for 𝑛 ≥ 12.

Proof. 

An overlapping edge unfolding in a 12-gonal Archimedean antiprism

: Cutting edges

: Non-cutting edges

Theorem 3 (Restated)



Proof of Theorem 3
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13-gonal Archimedean antiprism 14-gonal Archimedean antiprism

16-gonal Archimedean antiprism15-gonal Archimedean antiprism

Proof (continued).
Ø Cutting edges / Non-cutting edges be the same as 𝑛 = 12.
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Proof (continued).

An overlapping edge unfolding in a 17-gonal Archimedean antiprism
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Proof (continued).

An overlapping edge unfolding in a 17-gonal Archimedean antiprism

: Cutting edges

: Non-cutting edges
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Proof (continued).

An overlapping edge unfolding in a 17-gonal Archimedean antiprism

18-gonal Archimedean antiprism

ØCutting / non-cutting edges be the 
same as 𝑛 = 17.

: Cutting edges

: Non-cutting edges
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Proof (continued).

An overlapping edge unfolding in a 19-gonal Archimedean antiprism
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Proof (continued).

An overlapping edge unfolding in a 19-gonal Archimedean antiprism

: Cutting edges

: Non-cutting edges
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Proof (continued).

An overlapping edge unfolding in a 19-gonal Archimedean antiprism

Overlapping edge unfoldings exist in 𝑛-gonal Archimedean
antiprisms for 𝑛 ≥ 19.

Lemma 3

Cutting / non-cutting edges be the same as 𝑛 = 19. ∎

: Cutting edges

: Non-cutting edges


