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|Edge unfoldings

—| Definition 1 [R. Uehara, 2018]

An edge unfolding of the polyhedron is a flat polygon formed
by cutting its edges and unfolding it into a plane.

Cutting along the thick line of each left cube ...

(a) Edge unfolding (b) Not edge unfolding
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| Convex regular-faced polyhedra

— Definition 2
Convex reqgular-faced polyhedra are convex polyhedra with
all faces are regular polygons.

Categorized into 5 classes

D

Platonic solid  Archimedean solid

Archimedean prism Archimedean antiprism Johnson solid




Overlapping edge unfoldings

Overlapping edge unfoldings exist in some convex polyhedra.

Truncated dodecahedron Truncated icosahedron
[T. Horiyama and W. Shoji, 2011] [T. Horiyama and W. Shoji, 2011]

12-gon-al prism 15-gonal prism
[Schlickenrieder, 1997] [Schlickenrieder, 1997]
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|Background and our results

Investigate: convex regular-faced polyhedra

Convex regular-faced

polyhedra Is there an overlapping edge unfolding?

Platonic solids

(Total 5 types) No [T. Horiyama and W. Shoji, 2011]

Yes (5 types) [T. Horiyama and W. Shoji, 2011]
No (5 types) [Hirose, 2015]
Open Problem (3 types)

Archimedean solids
(Total 13 types)

n-gonal Archimedean

prisms (n = 3 ) Open Problem

n-gonal Archimedean

antiprisms (n > 3) Open Problem

Johnson solids
(Total 92 types)

Open Problem
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|Background and our results

Investigate: convex regular-faced polyhedra

Convex regular-faced

polyhedra Is there an overlapping edge unfolding?

Platonic solids

(Total 5 types) No [T. Horiyama and W. Shoji, 2011]

Yes (5 types) [T. Horiyama and W. Shoji, 2011]
No (5 types) [Hirose, 2015]
No (2 types), Yes (1 type)

Archimedean solids
(Total 13 types)

n-gonal Archimedean No (3 <n < 23)
prisms (n = 3) Yes (n = 24)
n-gonal Archimedean No (3 <n<11)
antiprisms (n = 3) Yes (n=>12)
Johnson solids No (48 types)
(Total 92 types) Yes (44 types)




|0ur results in Archimedean solids

—{ Theorem 1

1. An icosidodecahedron and a rhombitruncated
cuboctahedron have no overlapping edge unfoldings.
2. A snub cube has overlapping edge unfoldings.

No exist

Truncated Truncated Truncated Rhombi Rhombitruncated
Cuboctahedron

Icosidodecahedron

tetrahedron hexahedron octahedron cuboctahedron cuboctahedron

Truncated Rhombitruncated

dodecahedron icosahedron cahedron icosidodecahedron dodecahedron Snub cube
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1. An icosidodecahedron and a rhombitruncated
cuboctahedron have no overlapping edge unfoldings.
2. A snub cube has overlapping edge unfoldings.

New results

No exist
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|0ur results in Archimedean prisms

-1 Theorem 2

1. Overlapping edge unfoldings do not exist for n-gonal
Archimedean prisms for 3 < n < 23.

2. Overlapping edge unfoldings exist in n-gonal Archimedean
prisms for n > 24.
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An overlapping edge unfolding in a 24-gonal Archimedean prism
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Our results in Archimedean antiprisms

—{ Theorem 3

1. Overlapping edge unfoldings do not exist for n-gonal
Archimedean antiprisms for 3 <n < 11.

2. Overlapping edge unfoldings exist in n-gonal Archimedean
antiprisms for n > 12.

An overlapping edge unfolding in a 12-gonal Archimedean antiprism




|0ur Results in Johnson solids

- Theorem 4

1. 48 Johnson solids do not have overlapping edge unfoldings.
2. 44 Johnson solids have overlapping edge unfoldings.

Open (92 types)
I
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* Johnson Solid image files were used as published in https:/mitani.cs.tsukuba.ac.jp/polyhedron/data/polyhedron.zip
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* Johnson Solid image files were used as published in https:/mitani.cs.tsukuba.ac.jp/polyhedron/data/polyhedron.zip
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|Algorithm by T. Horiyama and W. Shoiji

Procedure [T. Horiyama and W. Shoji, 2011]

1. Enumerate the edge unfoldings of a polyhedron.
2. Check the overlapping for each unfolding.

(Ex.) Hexahedron (The number of edge unfoldings = 11)
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|Algorithm by T. Horiyama and W. Shoiji

If we use [T. Horiyama and W. Shoji, 2011] algorithm...

The number of edge unfoldings ~ 3x10%8
= 100 years to check!

Truncated icosahedron
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|Algorithm by T. Horiyama and W. Shoiji
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(1) (2) (3) (4)
» Checking the same pair of faces repeatedly.



|Our algorithm

—| Rotational Unfolding

1. Enumerating the path between any two faces by rolling a
polyhedron in a “Koro Koro” approach.
2. Checking the overlap of both end-faces of a path.
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—| Rotational Unfolding

1. Enumerating the path between any two faces by rolling a
polyhedron in a “Koro Koro” approach.
2. Checking the overlap of both end-faces of a path.
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Q. Why only check the overlap of both end-faces in the path?
12




|Our algorithm

-Lemma 1

The path in the edge unfolding that connects two faces is one
of the paths enumerated by rotational unfolding.

[T. Horiyama and W. Shoji, 2011] Proposed

cC> = 15 ways 6 ways



|Our algorithm

-Lemma 1

The path in the edge unfolding that connects two faces is one
of the paths enumerated by rotational unfolding.

[T. Horiyama and W. Shoji, 2011] Proposed

=» The other pair of faces is already checked.

Only check the both end-faces in the path. g

cC> = 15 ways 6 ways



|Ideas for more speed up

-1 Method 1

If the distance between the two end faces of a path is too far,
we prune the search.

Path
f. f

Polyhedron o
Remaining L.
faces
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|Ideas for more speed up

-1 Method 1

If the distance between the two end faces of a path is too far,
we prune the search.

D
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Remaining |
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It W <D —r,—r, f; does not overlap.




|Ideas for more speed up

-1 Method 2

If a polyhedron has symmetric unfoldings, we only compute
one of them.

The y-coordinate becomes ...
(D Non-zero for the first time (2) Negative =» Prune the search




|Ideas for more speed up

Method 2

If a polyhedron has symmetric unfoldings, we only compute
one of them.

The y-coordinate becomes ...
(D Non-zero for the first time (2) Negative =» Prune the search

Note : This pruning does not work for non-symmetry polyhedron.
(Ex.) Snub cube, Snub dodecahedron and Johnson solids
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ISummary

Convex regular-faced

polyhedra Is there an overlapping edge unfolding?
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Fully proved the existence!



|Proof of Theorem 2

—| Theorem 2 (Restated)

2. Overlapping edge unfoldings exist in n-gonal Archimedean
prisms for n > 24.

Proof.
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An overlapping edge unfolding in a 24-gonal Archimedean prism
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An overlapping edge unfolding in a 24-gonal Archimedean prism




|Proof of Theorem 2

Proof (continued).
» Cutting edges / Non-cutting edges be the same as n = 24

27-gonal Archimedean prism 28-gonal Archimedean prism

18




Proof of Theorem 2

Proof (continued).

An overlapping edge unfolding in a 29-gonal Archimedean prism
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Proof (continued). s ;. Cutting edges

: Non-cutting edges

An overlapping edge unfolding in a 29-gonal Archimedean prism




Proof of Theorem 2

Proof (continued). s ;. Cutting edges

: Non-cutting edges @

An overlapping edge unfolding in a 29-gonal Archimedean prism

-Lemma 2

Overlapping edge unfoldings exist in n-gonal Archimedean
prisms for n > 29.

Cutting / non-cutting edges be the same as n = 29. u




Proof of Theorem 3

—| Theorem 3 (Restated)

2. Overlapping edge unfoldings exist in n-gonal Archimedean
antiprisms for n > 12.

Proof.

An overlapping edge unfolding in a 12-gonal Archimedean antiprism

20




|Proof of Theorem 3

—| Theorem 3 (Restated)

2. Overlapping edge unfoldings exist in n-gonal Archimedean
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An overlapping edge unfolding in a 12-gonal Archimedean antiprism
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|Proof of Theorem 3

Proof (continued).
» Cutting edges / Non-cutting edges be the same as n = 12.

13-gonal Archimedean antiprism  14-gonal Archimedean antiprism
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15-gonal Archimedean antiprism  16-gonal Archimedean antiprism
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Proof of Theorem 3

Proof (continued).

An overlapping edge unfolding in a 17-gonal Archimedean antiprism
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Proof (continued).
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An overlapping edge unfolding in a 17-gonal Archimedean antiprism




Proof of Theorem 3

Proof (continued). s ;. Cutting edges
e : Non-cutting edges
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An overlapping edge unfolding in a 17-gonal Archimedean antiprism

» Cutting / non-cutting edges be the
same asn = 17.

18-gonal Archimedean antiprism
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Proof of Theorem 3

Proof (continued).

An overlapping edge unfolding in a 19-gonal Archimedean antiprism
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An overlapping edge unfolding in a 19-gonal Archimedean antiprism




Proof of Theorem 3
Proof (continued).

s . Cutting edges
: Non-cutting edges |

An overlapping edge unfolding in a 19-gonal Archimedean antiprism

-Lemma 3

Overlapping edge unfoldings exist in n-gonal Archimedean
antiprisms for n > 19.

Cutting / non-cutting edges be the same as n = 19. u




