オストルのPSPACE困難性

◎吉渡 叶 名古屋大学

塩田拓海 九州工業大学

鎌田斗南 北陸先端科学技術大学院大学

組合せゲーム

組合せゲーム

プレイヤが二人交互に着手ランダム性がない全ての情報が公開

組合せゲームにおける興味関心

現在の局面,次に行動するプレイヤが与えられたとき, どちらのプレイヤがゲームに勝つかを判定したい

→必勝判定

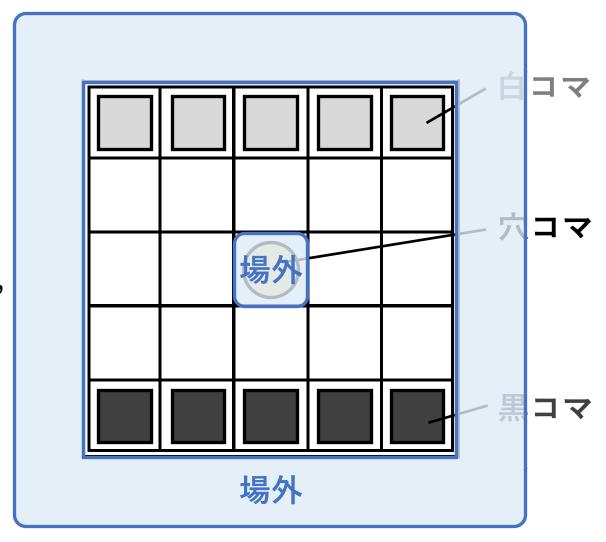
プレイヤ 黒プレイヤ(先手), 白プレイヤ

勝敗条件

自色のコマが2つ場外に出たら, その色のプレイヤの負け

場外

- ・穴コマが置いてあるマス
- ボードの外



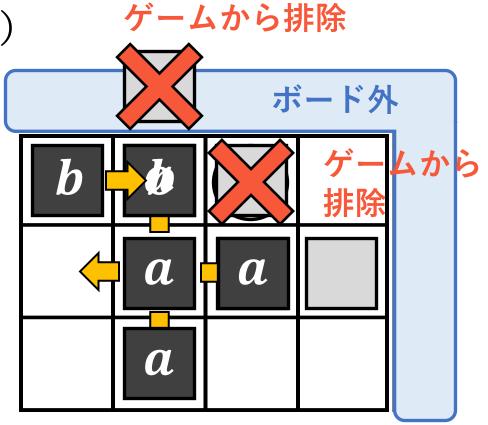
手番での行動(①, ②のいずれかを選択)

①自色のコマを1つ選び, 上下左右いずれかに1マス移動

このとき、移動先が

- ·黒コマまたは白コマ
 - →全てまとめて移動

- 場外(穴コマまたはボード外)
 - →場外に出たコマを排除

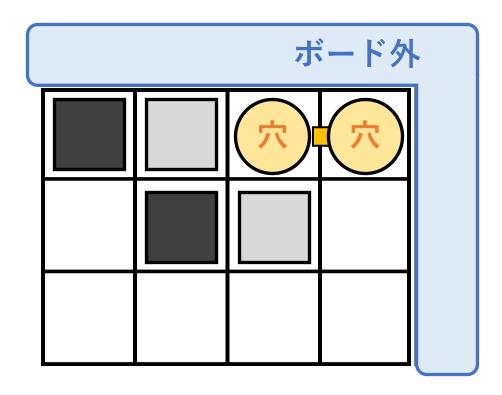


手番での行動(①, ②のいずれかを選択)

②穴コマを上下左右に隣接する **空きマス**に移動

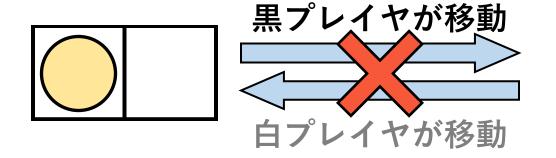
できない移動

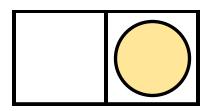
- ・場外に出す
- ・黒コマまたは白コマに重ねる



制約

相手の直前の着手を取り消す手は禁止





研究理由

局面の繰り返しが起こりうるゲーム

相手の**直前の**着手を取り消す手は禁止だが, **複数の局面を経由して一度現れた局面に戻ることはある**

→将棋などの難しいゲームに近い PSPACEに含まれるかは明らかではない

本研究

オストルの必勝判定についての研究

主結果

ボードサイズが $n \times n$ かつ黒コマと白コマがそれぞれn個であっても、任意の正整数kについて、相手のコマを先にk個排除したプレイヤが勝利するオストルの必勝判定問題はPSPACE困難である。

今回の発表内容

ボードサイズ自由、コマ数自由、k=1の場合の証明

証明概要

有向グラフ上での**一般化頂点しりとり**からの帰着

一般化頂点しりとり

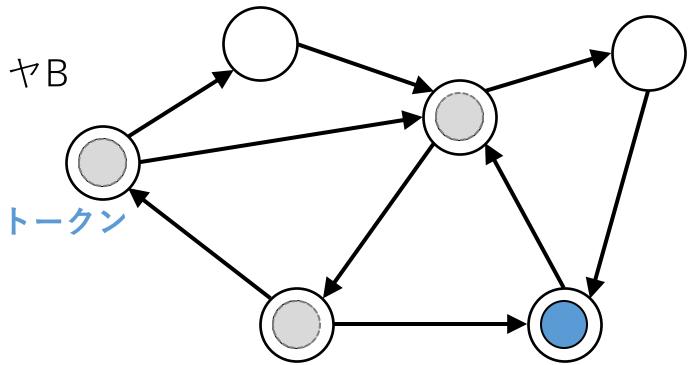
プレイヤ

プレイヤA(先手), プレイヤB

手番での行動

トークンの移動

- ・有向辺に従う隣接点
- ・未訪問の頂点



トークンを移動できない →プレイヤBの負け

勝敗

トークンを動かせないプレイヤの負け

帰着概要

一般化頂点しりとりは、以下の制限を加えてもPSPACE完全[1]

平面グラフ

二部グラフ

最大次数3

【開始頂点が入次数0,出次数2

制限された一般化頂点しりとりで先手のプレイヤAが勝つ ⇔オストルで先手の黒プレイヤが勝つ

を満たすオストルの局面を多項式時間で作成できることを示す

帰着のアイデア

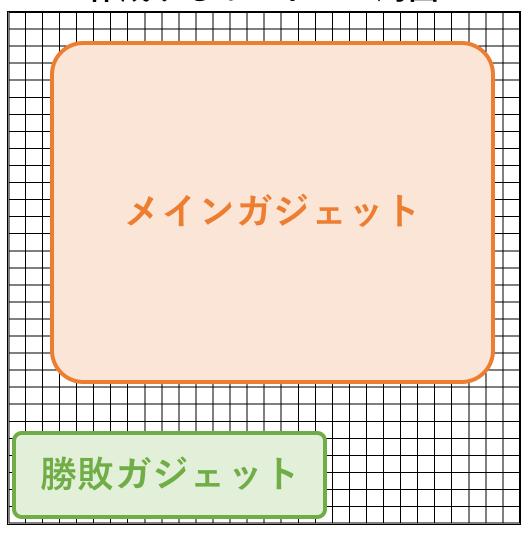
メインガジェット

一般化頂点しりとりの局面を 再現した部分

勝敗ガジェット

白プレイヤに有利な部分

作成するオストルの局面



勝敗ガジェット

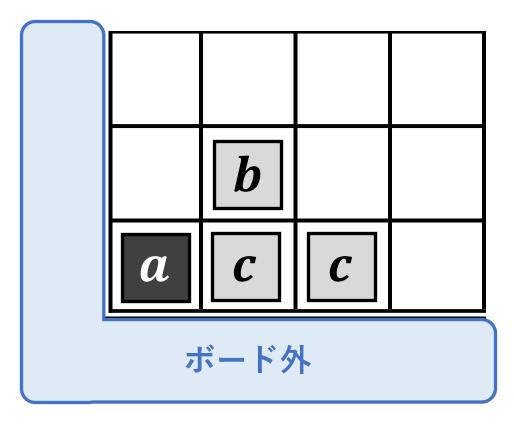
黒プレイヤ:

黒コマaをどのように動かしても 白コマbに場外に出される

白プレイヤ:

白コマcを左に動かすことで、

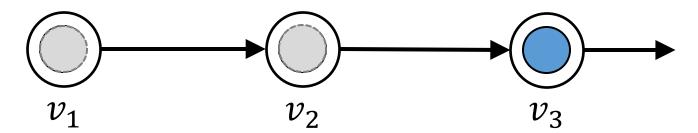
次の手番で必ず黒コマaを場外に出せる



白プレイヤは勝敗ガジェットに着手した時点で, 黒コマを1個場外に出せることが確定する

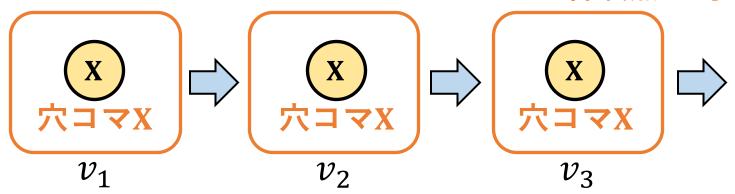
メインガジェット

一般化頂点しりとりでのトークンの移動



オストルでは特定の穴コマXの移動で再現

各頂点に対応するガジェット



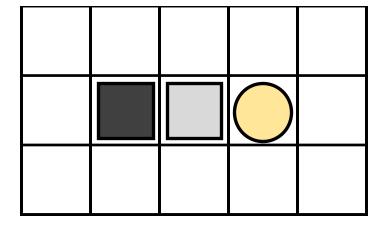
メインガジェット

白プレイヤに自由に手を打たせるチャンスを与えると、 勝敗ガジェットにより黒プレイヤは負ける

→黒プレイヤはメインガジェットで白コマを狙い続ける

メインガジェット

黒プレイヤの 着手後の状態



白プレイヤはこの状態の対処をしないと 次の手番で負ける

- →絶対に対処しないといけない
- →勝敗ガジェットに着手できない

黒プレイヤはこの操作を繰り返し,

狙った白コマを場外に出せたら黒プレイヤの勝ち

対応関係

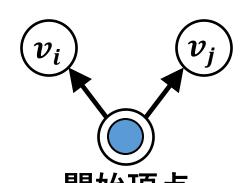
まとめると, 作成するオストルの局面の構造は以下の通り

- 一般化頂点しりとりにおいて、プレイヤAが勝つ
 - ⇒メインガジェットで白コマを場外に出して黒プレイヤが勝つ
- 一般化頂点しりとりにおいて、プレイヤBが勝つ
 - ⇒**勝敗ガジェットで**黒コマを場外に出して**白プレイヤが勝つ**

メインガジェット作成のために必要なこと

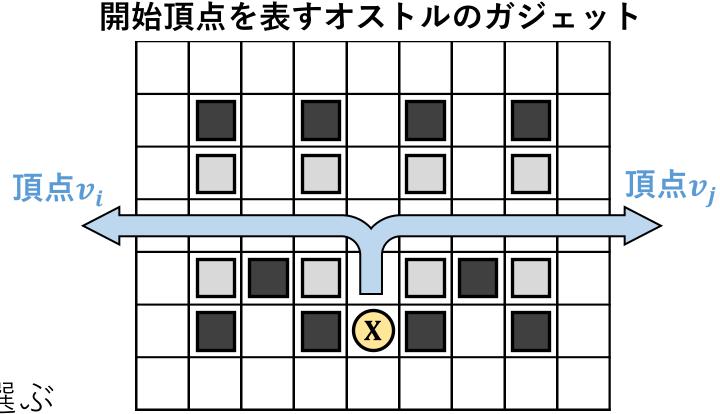
- 1. 全ての頂点に対し、対応するガジェットの作成
- 2. ガジェットをボード上で正しく繋げられることの確認

開始頂点



開始頂点 (入次数 0, 出次数 2)

先手のプレイヤAが 行き先(v_i または v_j)を選ぶ



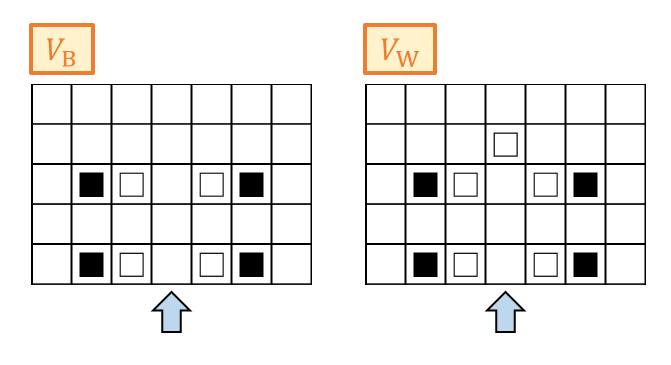
→黒プレイヤが行き先を選ぶ

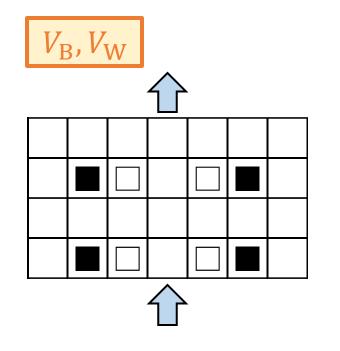
その他の頂点ガジェット紹介

入次数1,出次数0の頂点

(入次数2または3も同様)

入次数1,出次数1の頂点

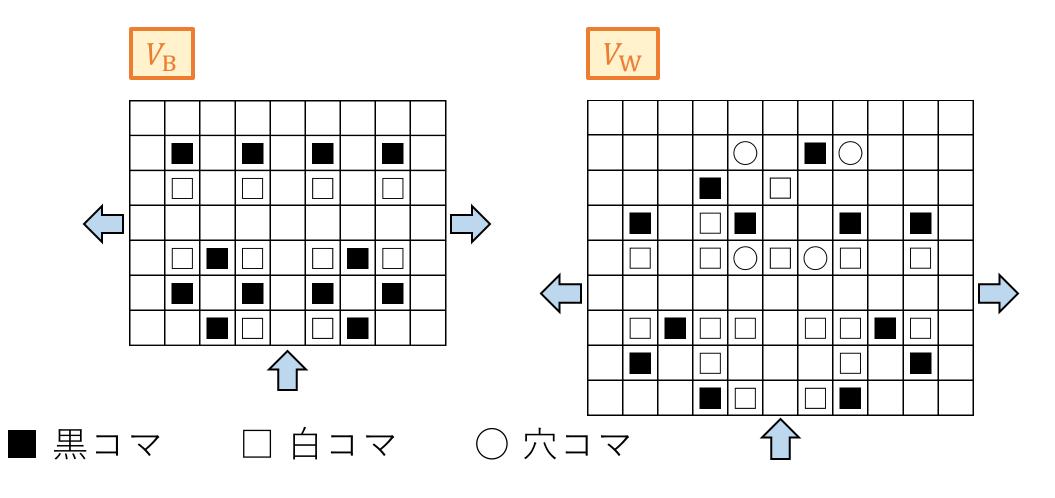




- 黒コマ □ 白コマ 穴コマ

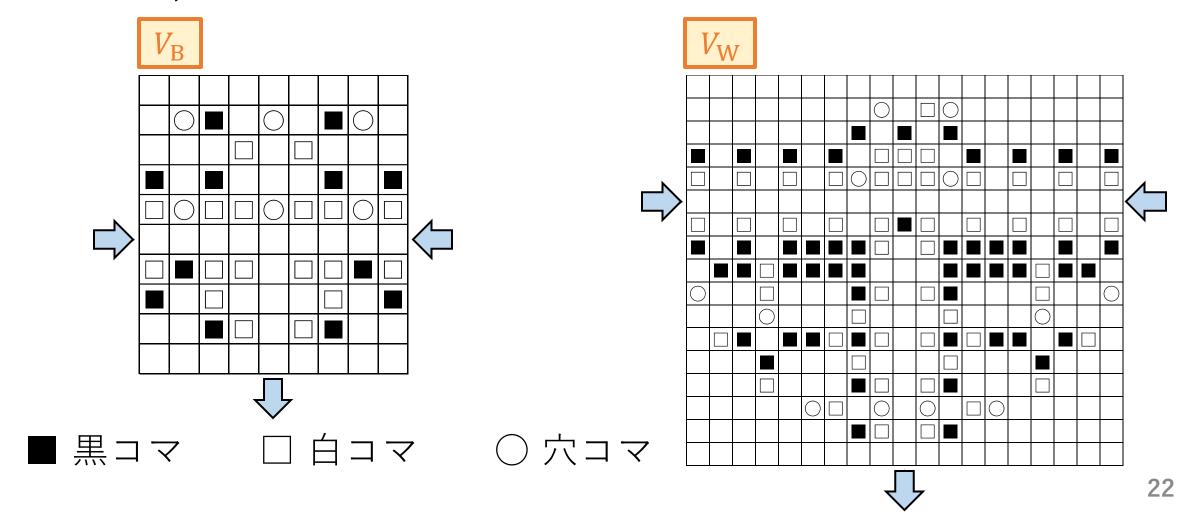
その他の頂点ガジェット紹介

入次数1,出次数2の頂点

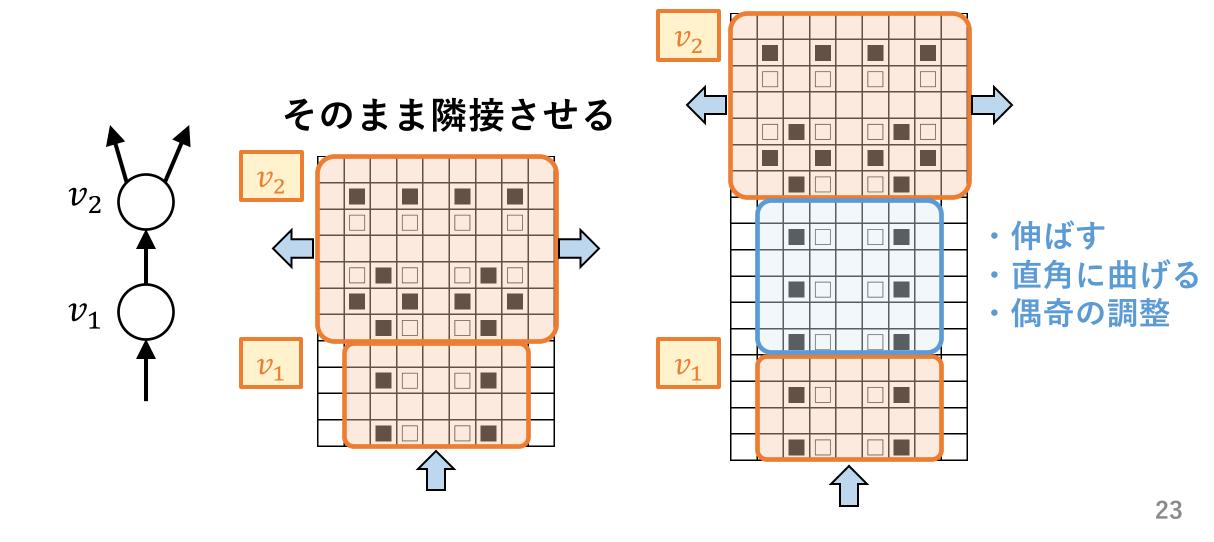


その他の頂点ガジェット紹介

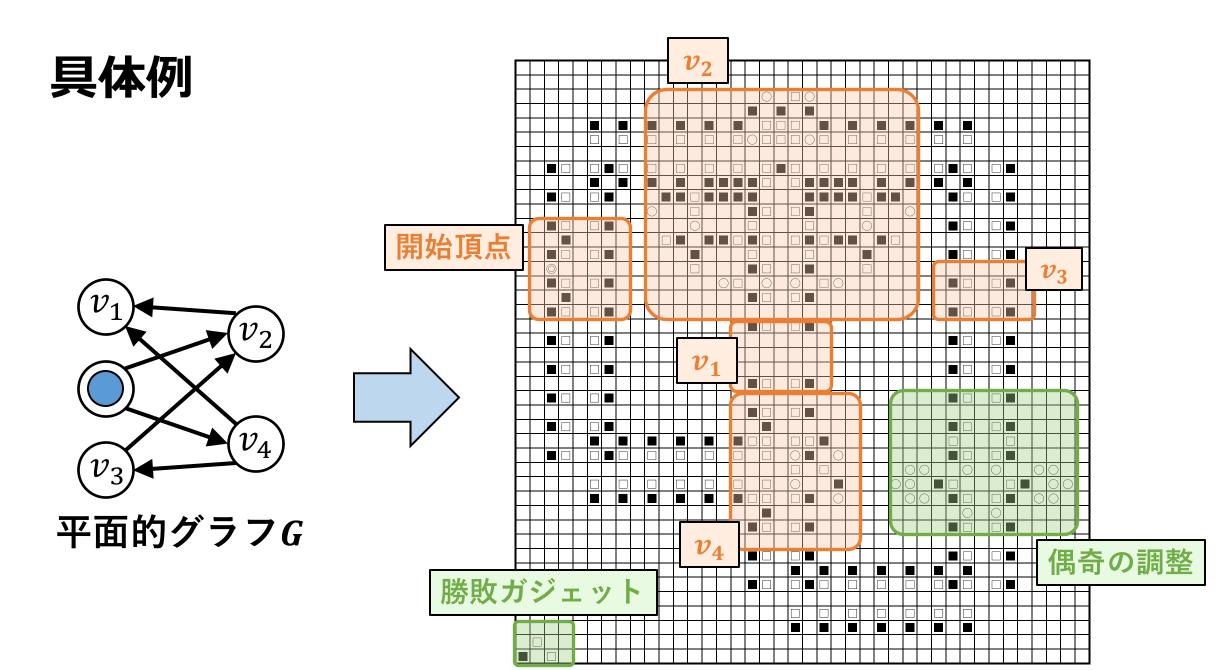
入次数2,出次数1の頂点



ガジェットの接続



間を埋める



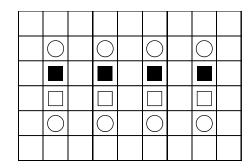
まとめ

結果

ボードサイズが $n \times n$ かつ黒コマと白コマがそれぞれn個であっても、任意の正整数kについて、相手のコマを先にk個排除したプレイヤが勝利するオストルの必勝判定問題はPSPACE困難である.

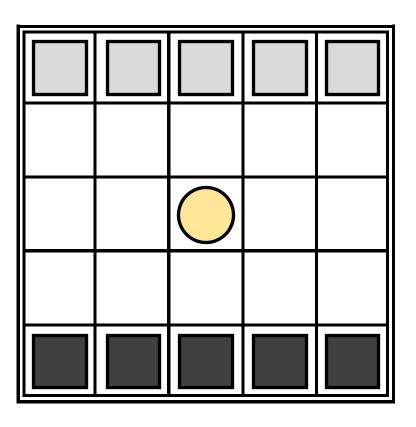
今後の展望

- ・PSPACE完全性の証明(PSPACEに含まれるかどうか)
- ・ボードサイズが5×5の一般的な初期局面の解析



ボードゲーム

2017年に Masao Fukaseにより考案



PSPACEに入るかどうか

全局面ゲーム木 (n*nでnコマずつ) 1手で遷移可能な可能な局面に有向辺をひく

ここで思ってる定理2がおかしい →定理2は、全てのkについての定理だから

・示した定理が3つ(定理1,2,3),包含関係がわからなくなった

		相手のコマを何個落としたら勝ちか		
		1個	k個	
黒コマと白コマの数	n個ずつ	PSPACE困難 (定理4と呼ぶこ とにする)	PSPACE困難 (定理 3)	
	制限なし (何個でも)	PSPACE困難 (定理 1)	PSPACE困難 (定理 2)	

この時,「定理1が言えたから,自明に定理2も言えますよね」は正しいのか?→正しいだって任意のk個にk=1も含まれるから

つまり定理1の方が強いことを言っていて、定理2はいらないのでは??

→いらないのではなくて、書き方(定理2の定義?)が悪い

・示した定理が3つ(定理1,2,3),包含関係がわからなくなった

		相手のコマを何個落としたら勝ちか		
		1個	k個	
黒コマと白コマの数	n個ずつ	PSPACE困難 (定理4と呼ぶこ とにする)	PSPACE困難 (定理 3)	
	制限なし (何個でも)	PSPACE困難 (定理1)	PSPACE困難 (定理 2)	

定理2で言いたかったことは、「1個落とすルールはPSPACE完全、2個落とすルールもPSPACE完全、3個落とすルールもPSPACE完全、…」と言うこと

決して「ある1つの正整数についてPSPACE完全が言えました」と言うことではない,全てのと言う意味の主張だった

理解したかも、定理2の方が強い主張をしてる

→じゃあこの意を正確に伝える書き方を考えるべき

・示した定理が3つ(定理1,2,3),包含関係がわからなくなった

		相手のコマを何個落としたら勝ちか		
		1個	全ての k個	
黒コマと白コマの数	n個ずつ	定理4 (と呼ぶことにする)	定理 3	
	制限なし (何個でも)	定理 1	定理 2	

定理同士の構造としては,

定理1:土台になっている

定理2:定理1にk拡張ガジェットを追加

定理4:定理1にボードサイズとコマ数の調整を入れたもの

定理3:定理2にボードサイズとコマ数の調整を入れたもの、もしくは定理4にk拡張ガジェットを追加

主結果(一番嬉しい結果)は

定理3

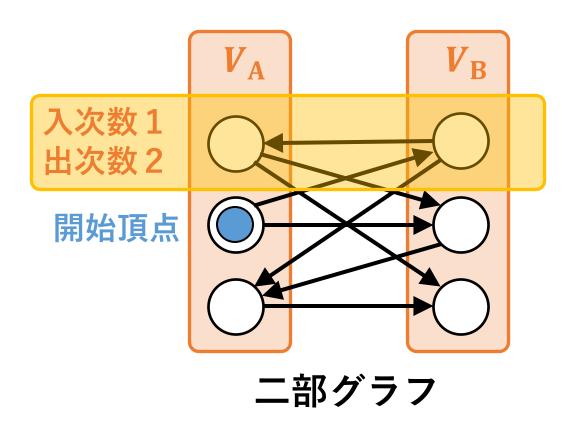
定理3 ボードサイズが $n \times n$ かつ黒コマと白コマがそれぞれn個であっても,任意の正整数kについて,相手のコマを先にk個排除したプレイヤが勝利するオストルの必勝判定問題はPSPACE困難である.

今日の証明ではボードサイズ自由, コマ数自由, k=1の場合について説明します.

定理1

任意のボードサイズに対し、相手のコマを先に1個排除したプレイヤが勝利するオストルの必勝判定問題はPSPACE困難である。

頂点ガジェット



トークンの移動

プレイヤA
$$V_{A} \rightarrow V_{B}$$

プレイヤB $V_{B} \rightarrow V_{A}$

 v_i :入次数 1,出次数 2 の頂点トークンの移動先は

 $v_i \in V_A$ ならば、プレイヤA $v_i \in V_B$ ならば、プレイヤB

が決定する

頂点ガジェット

これより,以下の頂点に対応するガジェットを作成する

現れうる頂点の種類(最大次数3)

- ·開始頂点(入次数0,出次数2)
- ·入次数1,出次数0
- · 入次数 2, 出次数 0
- ·入次数3,出次数0
- •入次数1,出次数1
- ・入次数2,出次数1
- · 入次数 1, 出次数 2

2通りずつ必要(V_A , V_B)

ガジェット内の行動制限

黒プレイヤが1つの白コマを狙うとき

白プレイヤの回避の手

- 白コマbを逃す
- 黒コマaをどける
- ・穴コマXを動かす

C	b			
a	$oldsymbol{b}$	X	X	
		X		

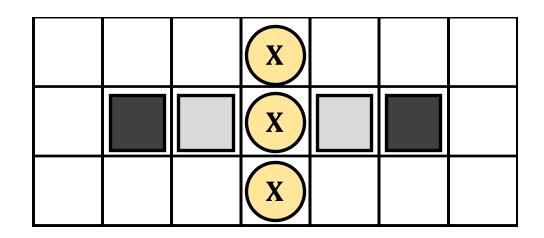
→複数通りある

ガジェット内の行動制限

黒プレイヤが2つ以上の白コマを同時に狙うとき

白プレイヤの回避の手 ・穴コマを動かす

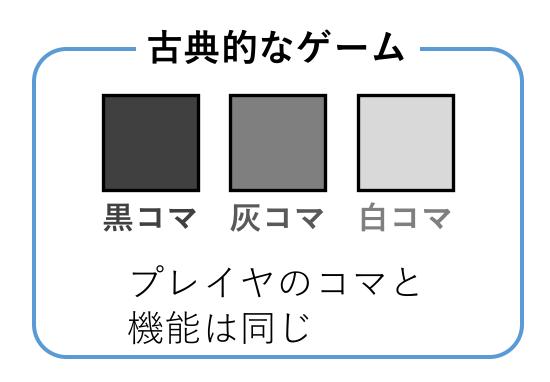
→1通り

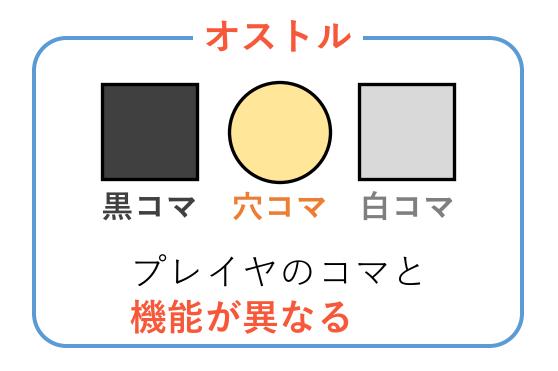


プレイヤの選択肢を制限できる

研究理由

2. どちらのプレイヤも着手できる中間のコマ





既存のゲームにはない何か新しい知見を期待する

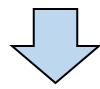
主結果の導出概要

今回の発表内容

ボードサイズ自由、コマ数自由、k=1の場合

 $\sqrt{}$ 互いに相手のコマをk-1個場外に出せるガジェットの追加

ボードサイズ自由、コマ数自由、 任意の $k \geq 1$ の場合



機能しないコマの追加とボードサイズの調整

主結果

ボードサイズ $n \times n$, 黒コマ白コマが各n個, 任意の $k \ge 1$ の場