Overlapping of Lattice Unfolding for Cuboids

CCCG 2023

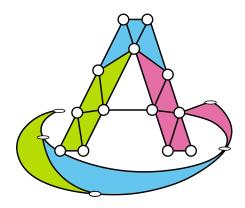
 \bigcirc Takumi SHIOTA[†], Tonan KAMATA[‡],

Ryuhei UEHARA[‡]

[†] Kyushu Institute of Technology, Japan

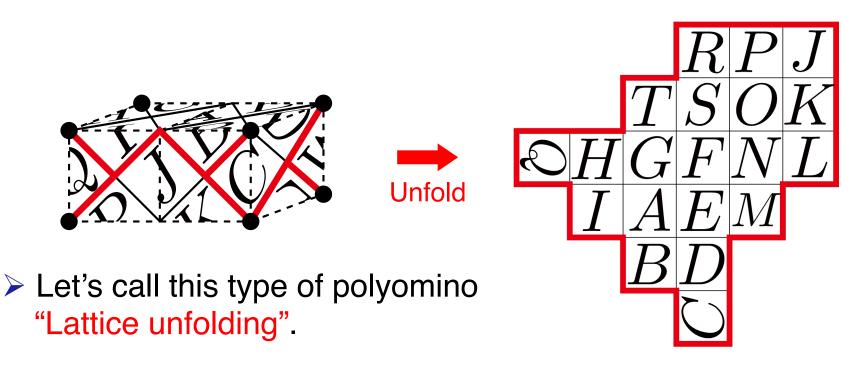
[‡] Japan Advanced Institute of Science and Technology, Japan

August 2, 2023



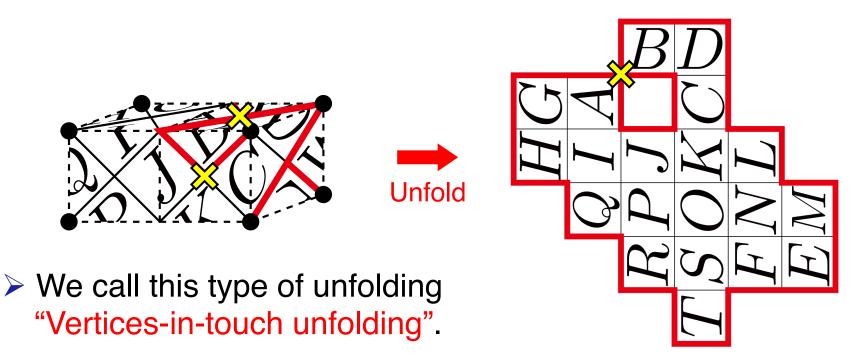
Let's consider unfolding a cuboid into a polyomino.

[Note] A *polyomino* is a polygon made by connecting multiple squares along their edges.



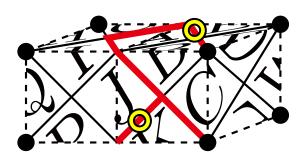
Let's consider unfolding a cuboid into a polyomino.

[Note] A *polyomino* is a polygon made by connecting multiple squares along their edges.

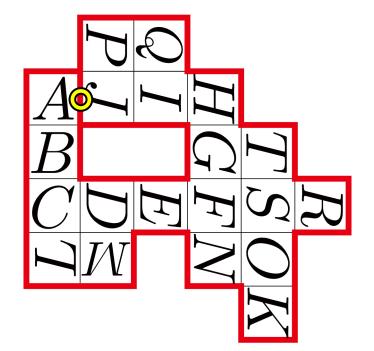


Let's consider unfolding a cuboid into a polyomino.

[Note] A *polyomino* is a polygon made by connecting multiple squares along their edges.

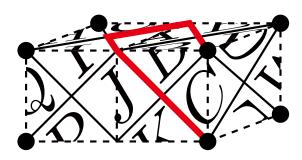


We call this type of unfolding "Edges-in-touch unfolding".

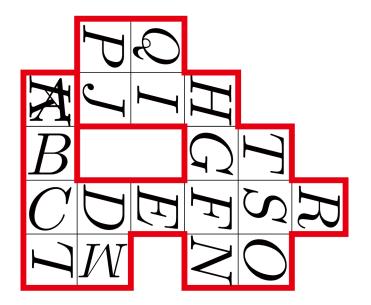


Let's consider unfolding a cuboid into a polyomino.

[Note] A *polyomino* is a polygon made by connecting multiple squares along their edges.



We call this type of unfolding "Faces-in-touch unfolding".



Overlapping of lattice unfolding Image: Consider unfolding a cuboid into a polyomino. Let's consider unfolding a cuboid into a polyomino. Image: Consider unfolding a cuboid into a polyomino. Mard to understand just looking at this figure >:(Image: Construction of the polyomino.

Unfold

We call this type of unfolding "Faces-in-touch unfolding".

Overlapping of lattice unfolding Let's consider unfolding a cuboid into a polyomino. Hard to understand just necting multiple **IN** looking at this figure >:(Mr. Kamata and I distribute my hand-made 3D models of "Faces-in-touch" for each table. Unfold We call this type of unfolding "Faces-in-touch unfolding".

Let's consider unfolding a cuboid into a polyomino.

Mr. Kamata and I distribute my hand-made 3D models of "Faces-in-touch" for each table.

Hard to understand just

looking at this figure >:(

If you get the model ...

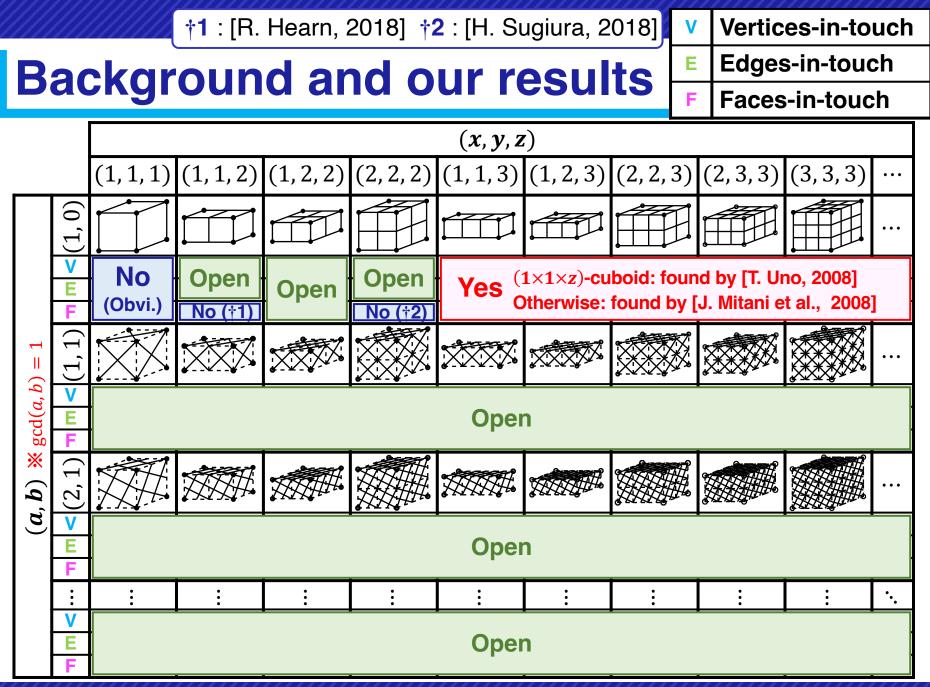
[No

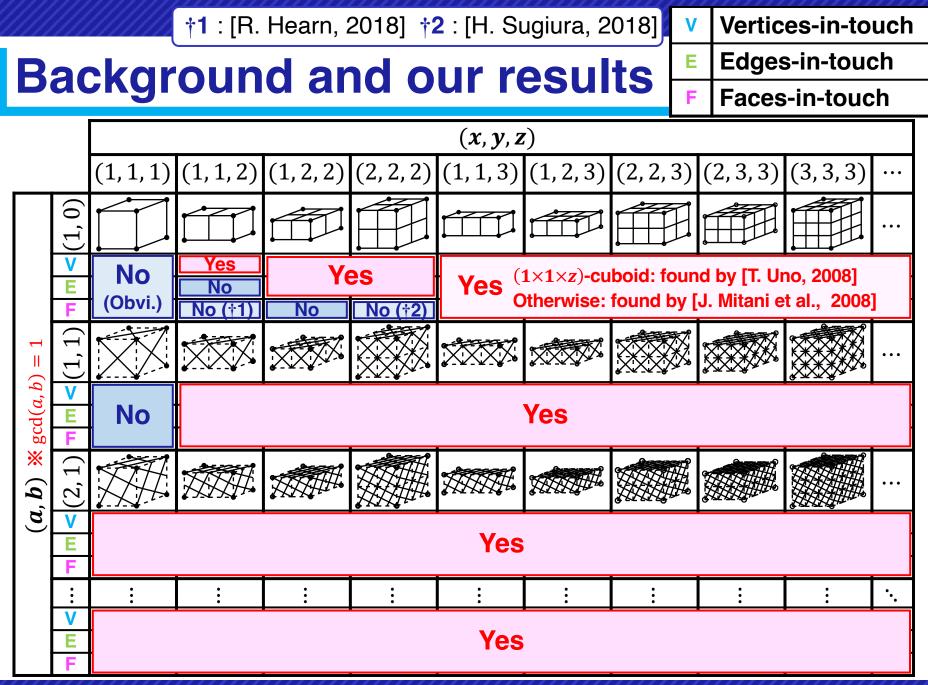
Please look at it and unfold the model

After you experience how they overlap ...

Please fold the model again & pass it turn on the left/right

Anecting multiple



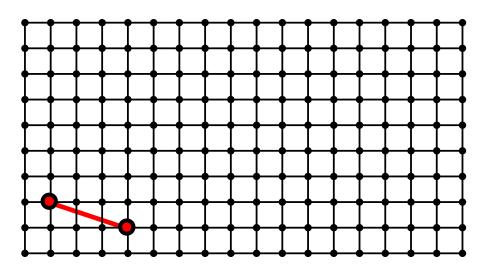


†1 : [R. Hearn, 2018] **†2** : [H. Sugiura, 2018] V Vertices-in-touch **Edges-in-touch** Ε **Background and our results Faces-in-touch** F (x, y, z)(1, 1, 1) (1, 1, 2) (1, 2, 2) (2, 2, 2)(1, 1, 3) (1, 2, 3) (2, 2, 3) (2, 3, 3) (3, 3, 3) $\overline{\mathbf{O}}$ No Yes $(1 \times 1 \times z)$ -cuboid: found by [T. Uno, 2008] Yes Otherwise: found by [J. Mitani et al., 2008] (Obvi.) No (†1 No No (†2 \widehat{q} gcd(a, No Yes AAA. TATAT à To help understand how to read this table ... From the next slide, define the following three. (1) Lattice cubes (2) Lattice cuboids (3) Lattice unfoldings

3

Definition 1

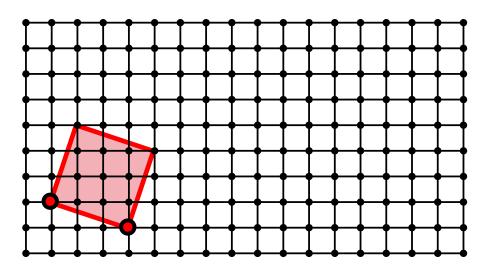
Choose two points on a square lattice and construct a square with these two points as one side. The cuboid assembled with this square as one face is called a lattice cube.



The square lattice

Definition 1

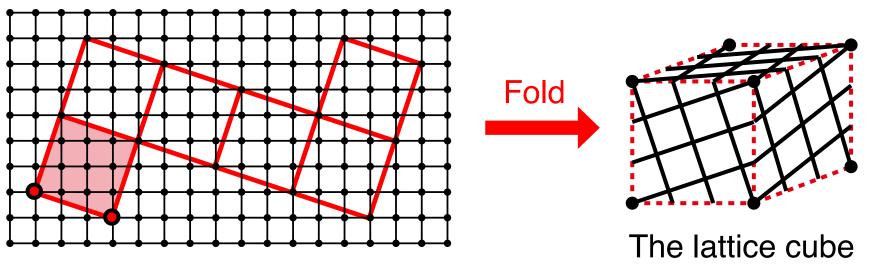
Choose two points on a square lattice and construct a square with these two points as one side. The cuboid assembled with this square as one face is called a lattice cube.



The square lattice

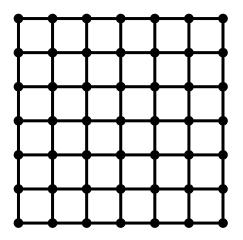
Definition 1

Choose two points on a square lattice and construct a square with these two points as one side. The cuboid assembled with this square as one face is called a lattice cube.

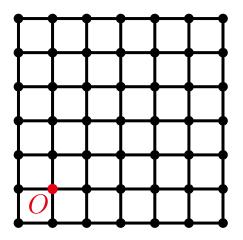


The square lattice

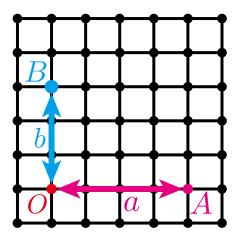
- I. Choose a point O(0,0) on the square lattice.
- II. Let the coordinates of point *A* be (a, 0) and *B* be (0, b) $(a \in \mathbb{N}, b \in \mathbb{N}^+, a \ge b)$.
- III. Let $L = |AB| = \sqrt{a^2 + b^2}$ be the length of one edge of a lattice cube.



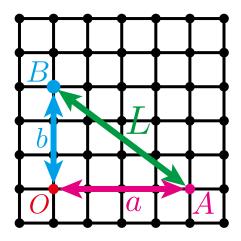
- I. Choose a point O(0,0) on the square lattice.
- II. Let the coordinates of point *A* be (a, 0) and *B* be (0, b) $(a \in \mathbb{N}, b \in \mathbb{N}^+, a \ge b)$.
- III. Let $L = |AB| = \sqrt{a^2 + b^2}$ be the length of one edge of a lattice cube.



- I. Choose a point O(0,0) on the square lattice.
- II. Let the coordinates of point *A* be (a, 0) and *B* be (0, b) $(a \in \mathbb{N}, b \in \mathbb{N}^+, a \ge b)$.
- III. Let $L = |AB| = \sqrt{a^2 + b^2}$ be the length of one edge of a lattice cube.

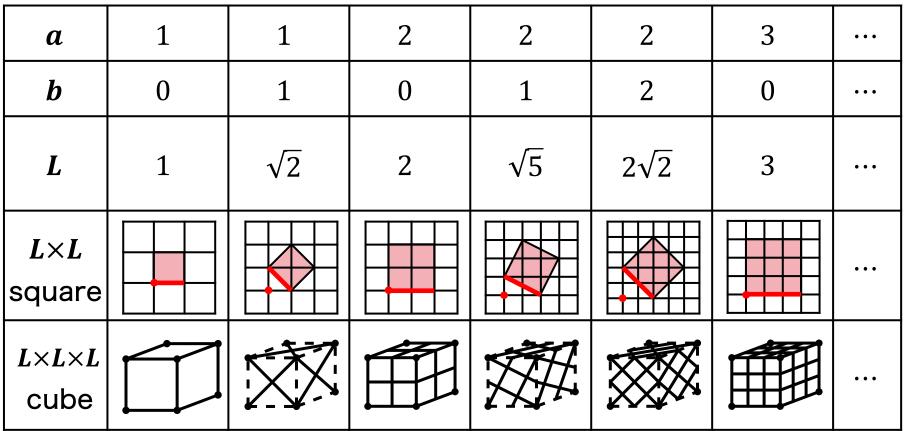


- I. Choose a point O(0,0) on the square lattice.
- II. Let the coordinates of point *A* be (a, 0) and *B* be (0, b) $(a \in \mathbb{N}, b \in \mathbb{N}^+, a \ge b)$.
- III. Let $L = |AB| = \sqrt{a^2 + b^2}$ be the length of one edge of a lattice cube.



The side length of a cube

List of lattice cubes

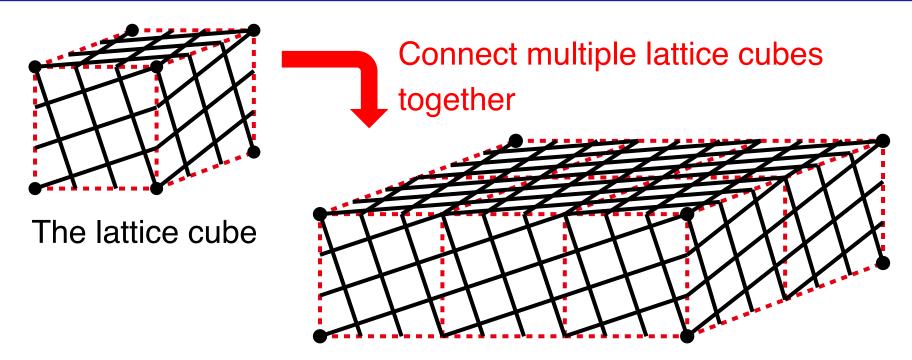


 $\begin{array}{c|c}
B \\
\hline \\
b \\
\hline \\
O \\
\hline \\
a \\$

Lattice cuboids

Definition 2

A cuboid made by connecting multiple lattice cubes is called a lattice cuboid. (Note: Lattice cubes \subset Lattice cuboids)



The lattice cuboid

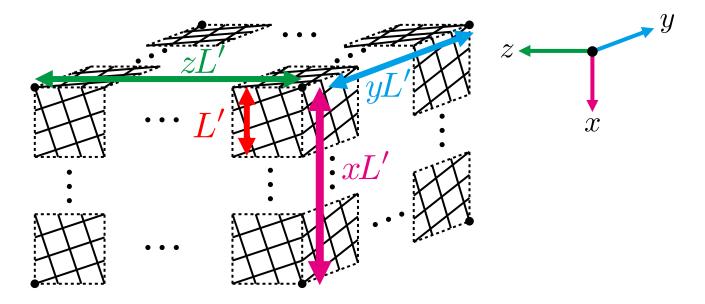
The three side lengths of a cuboid

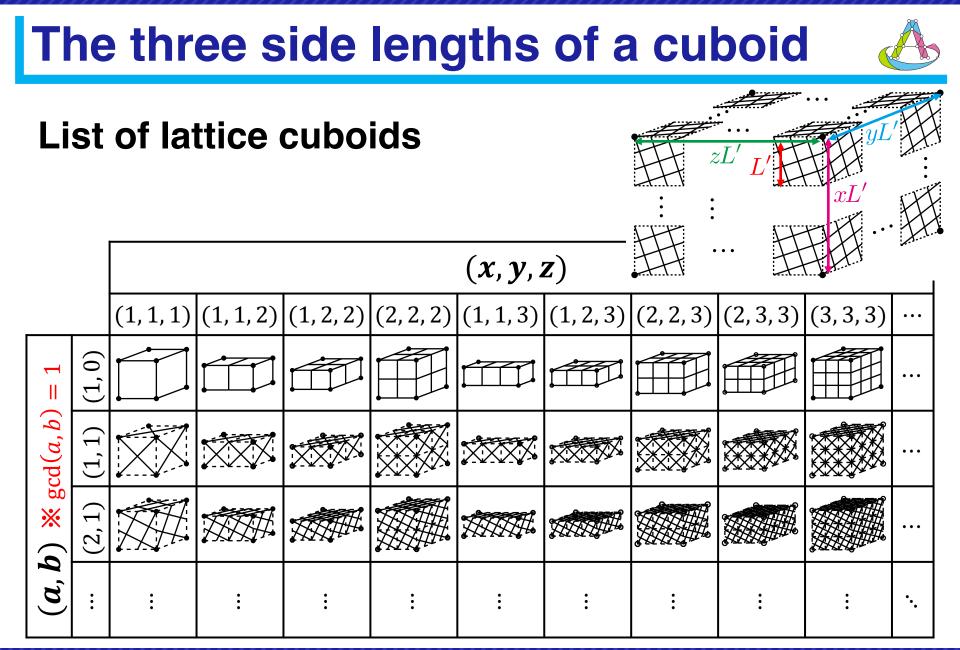
Let L' be the length of one edge of a lattice cube.

$$L' = \sqrt{a^2 + b^2} (a \in \mathbb{N}^+, b \in \mathbb{N}, a \ge b, \operatorname{gcd}(a, b) = 1)$$

Denote the lattice cuboid as "(xL', yL', zL')-cuboid".

 $(x, y, z \in \mathbb{N}, x \le y \le z)$

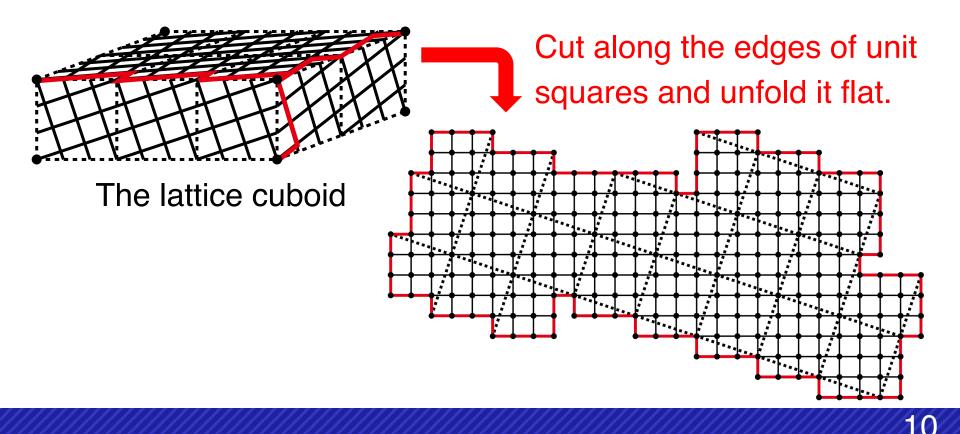




Lattice unfolding for cuboids

Definition 3

A lattice unfolding is a polygon obtained by cutting the face of the cuboid along the edges of unit squares.

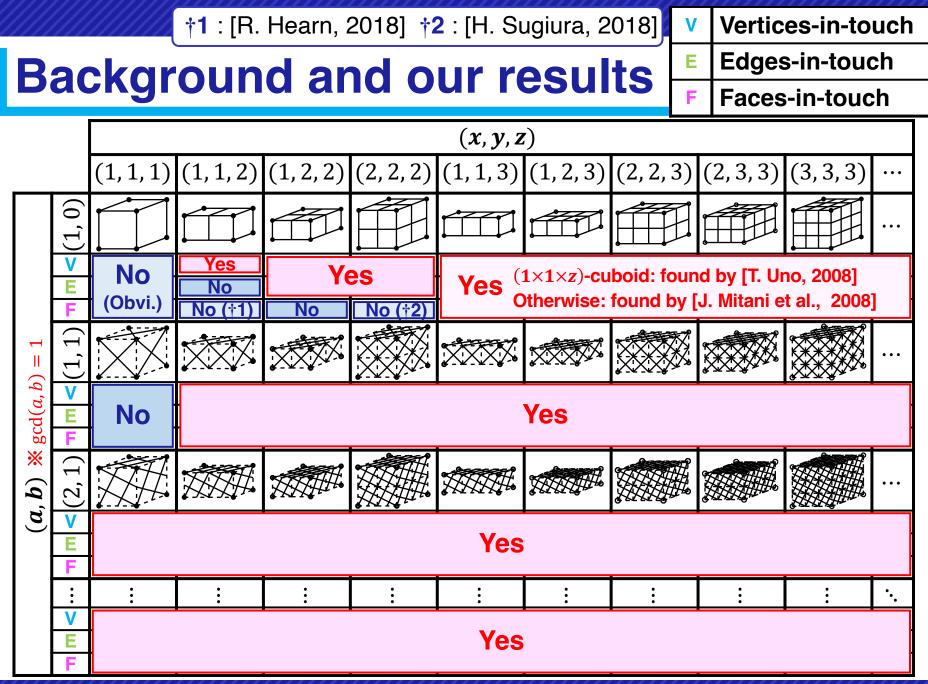


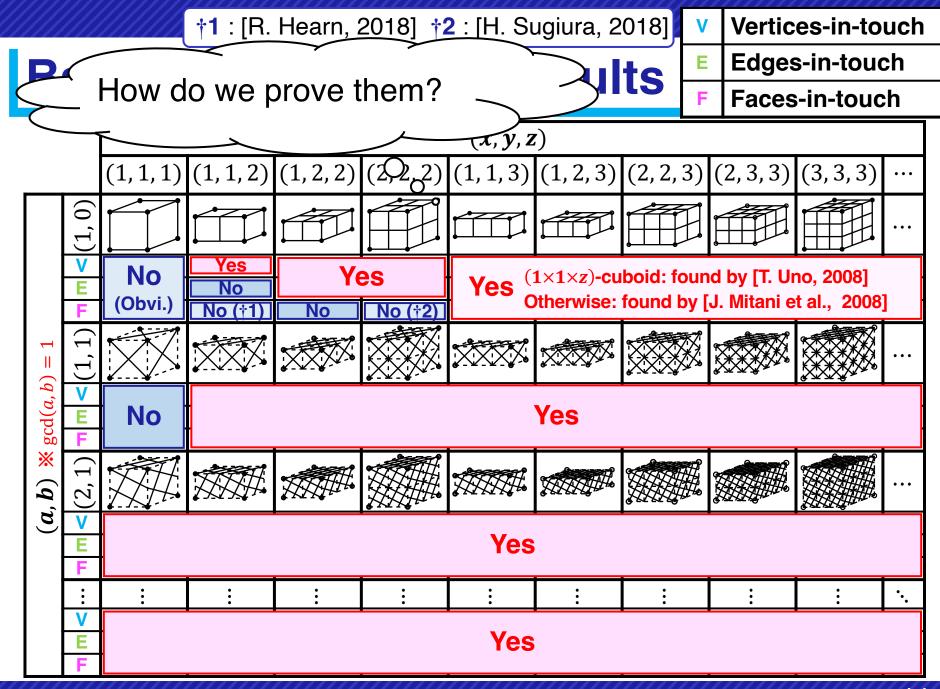
Lattice unfolding for cuboids

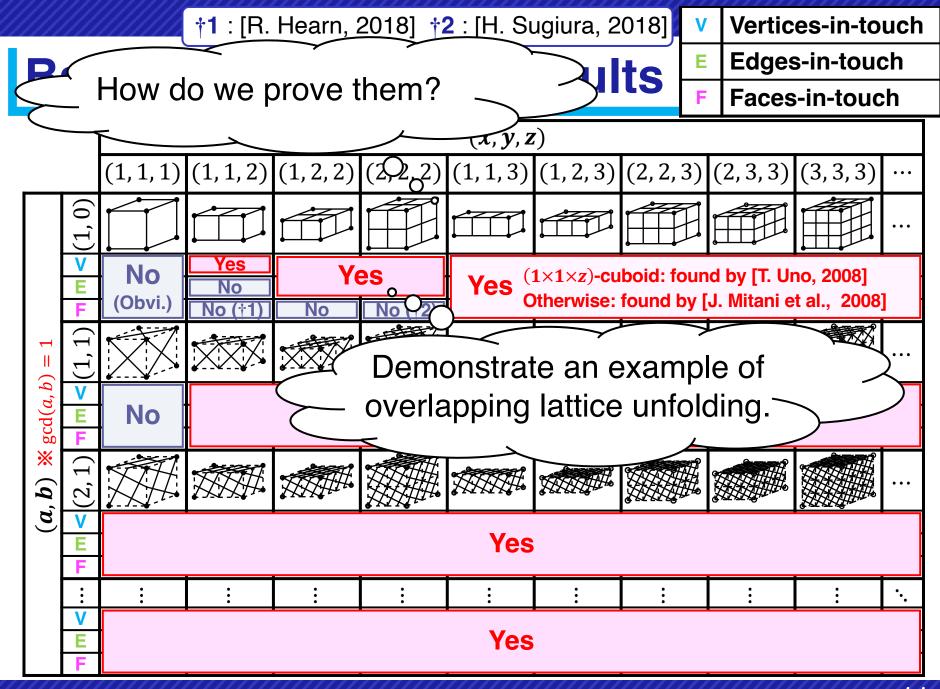
Definition 3

A lattice unfolding is a polygon obtained by cutting the face of the cuboid along the edges of unit squares.

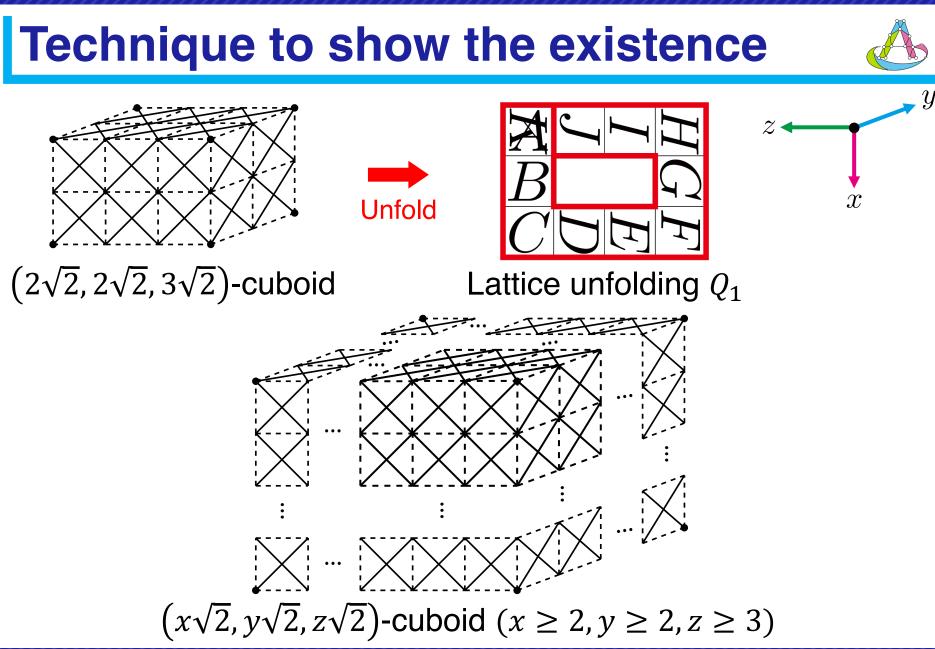


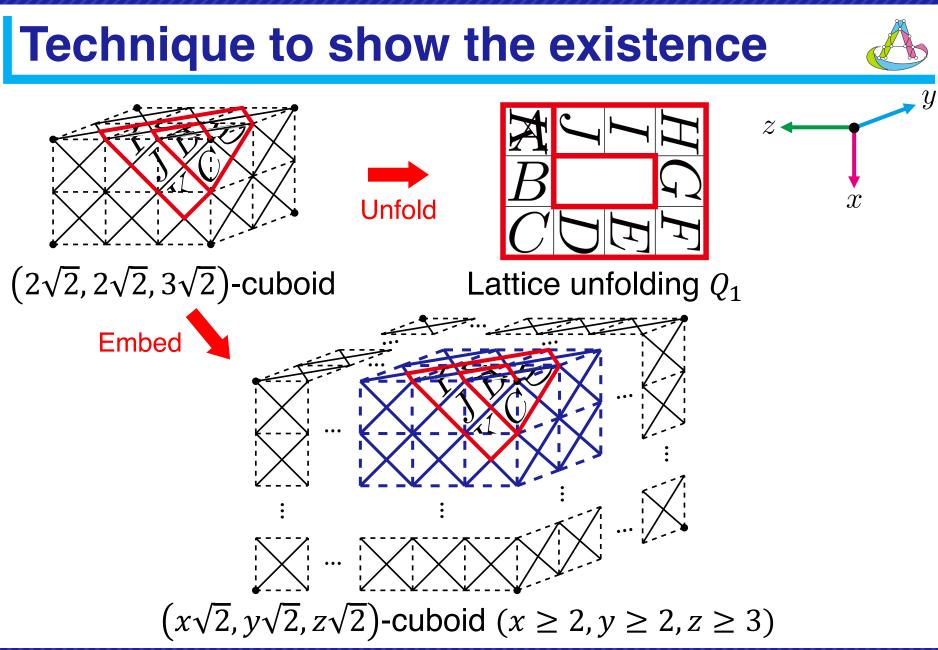


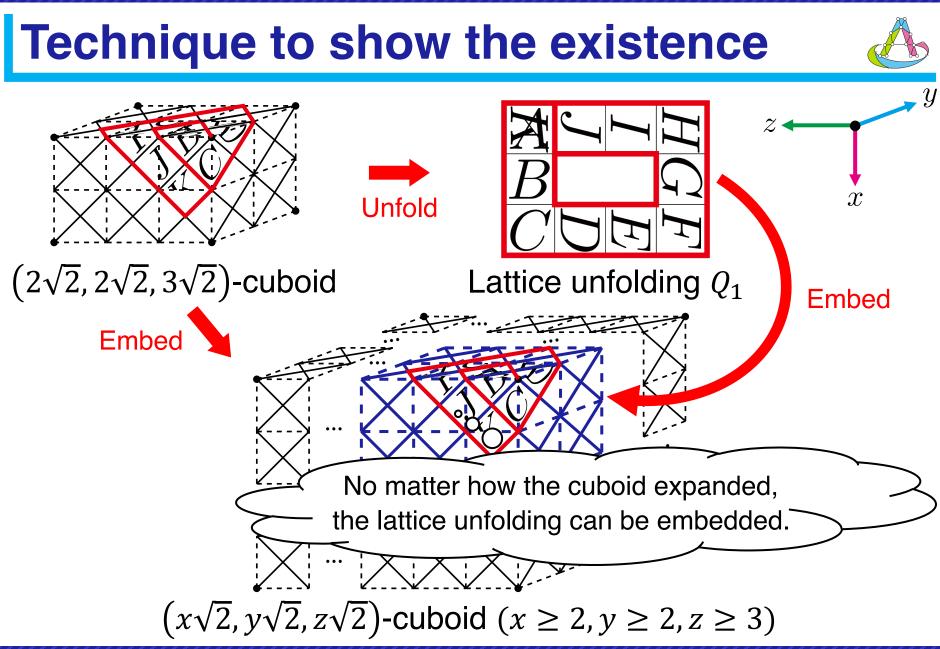


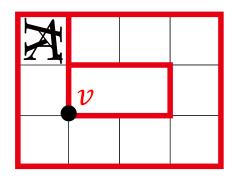


Technique to show the existence \swarrow \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $(2\sqrt{2}, 2\sqrt{2}, 3\sqrt{2})$ -cuboid \checkmark \uparrow \checkmark \downarrow <t

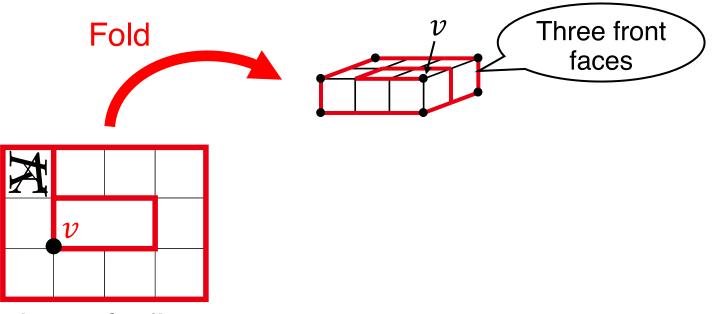




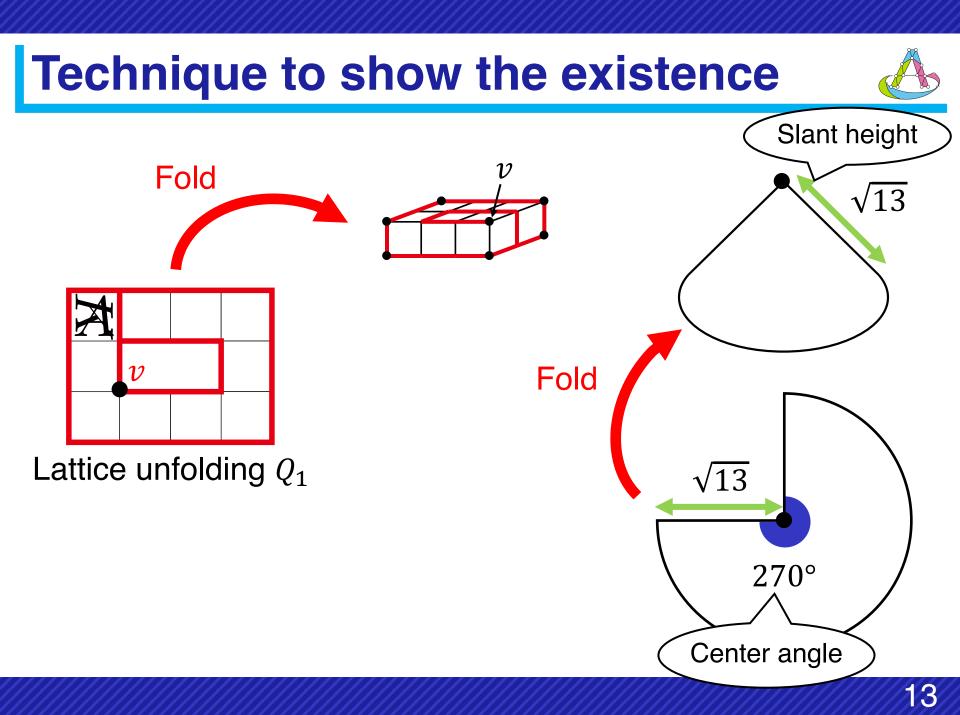


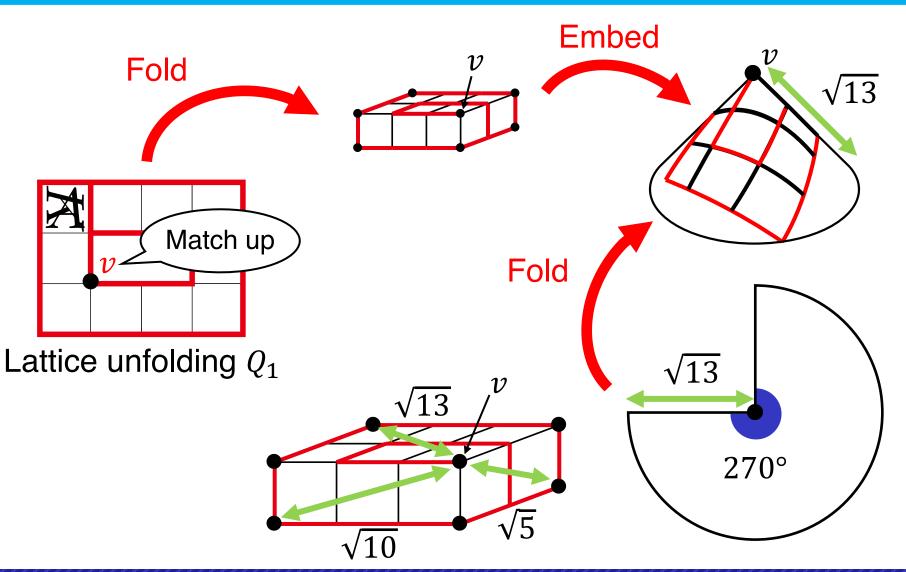


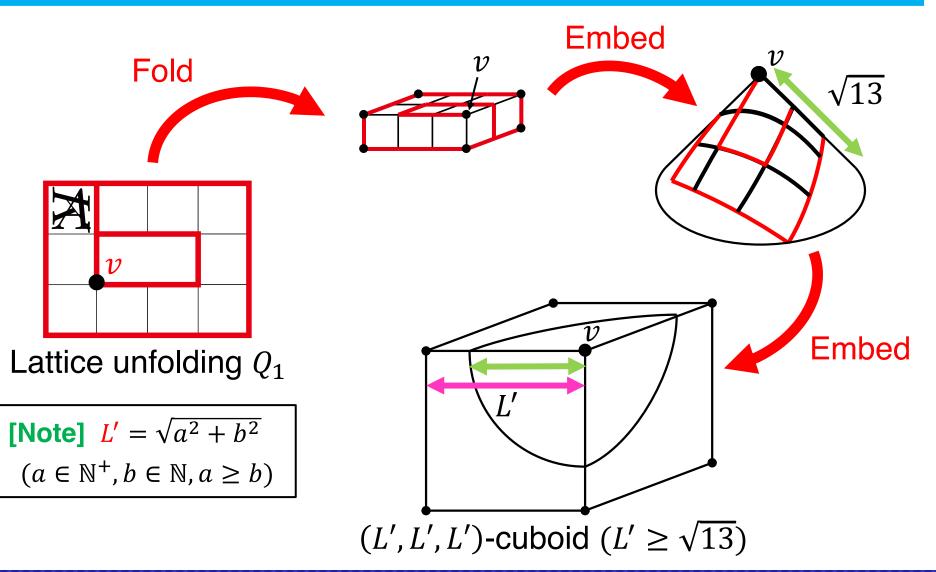
Lattice unfolding Q_1

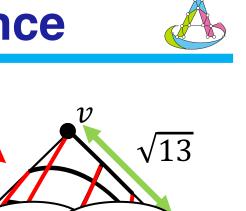


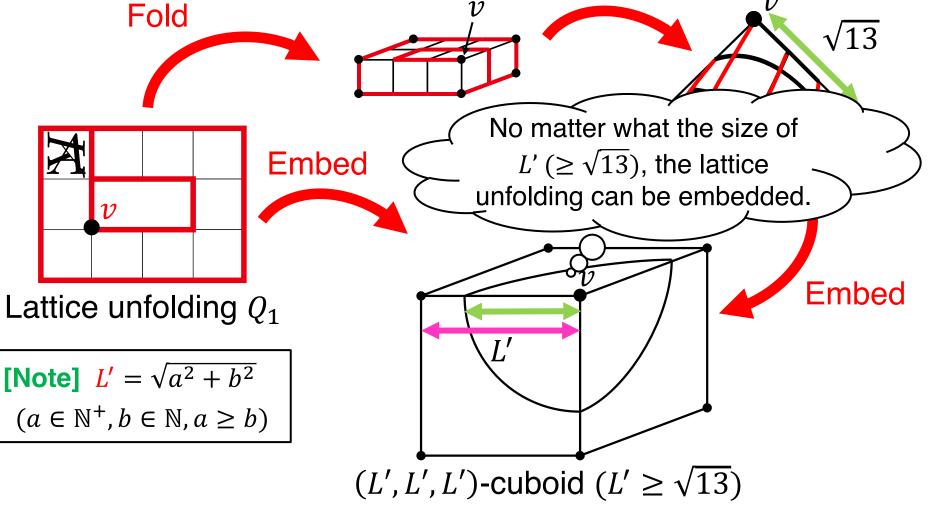
Lattice unfolding Q_1



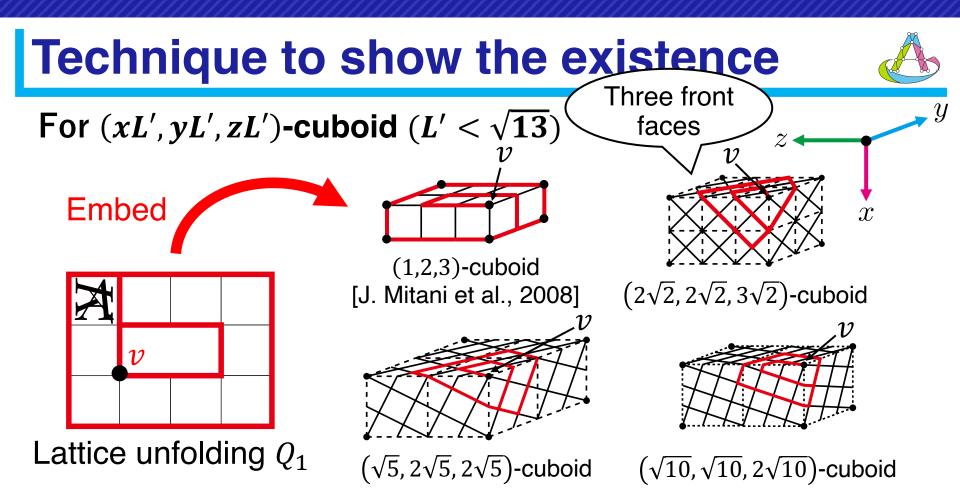


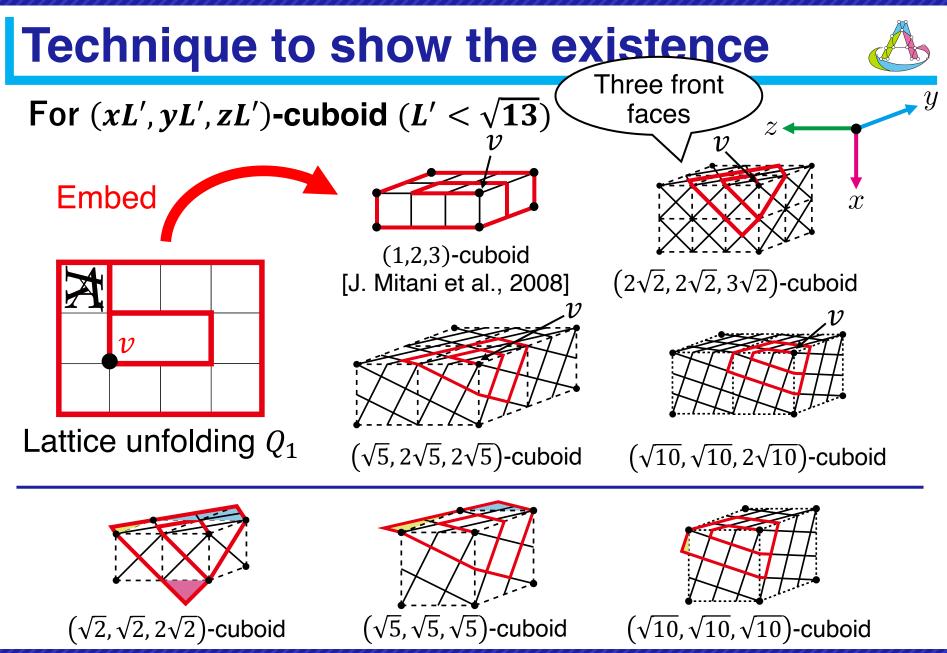


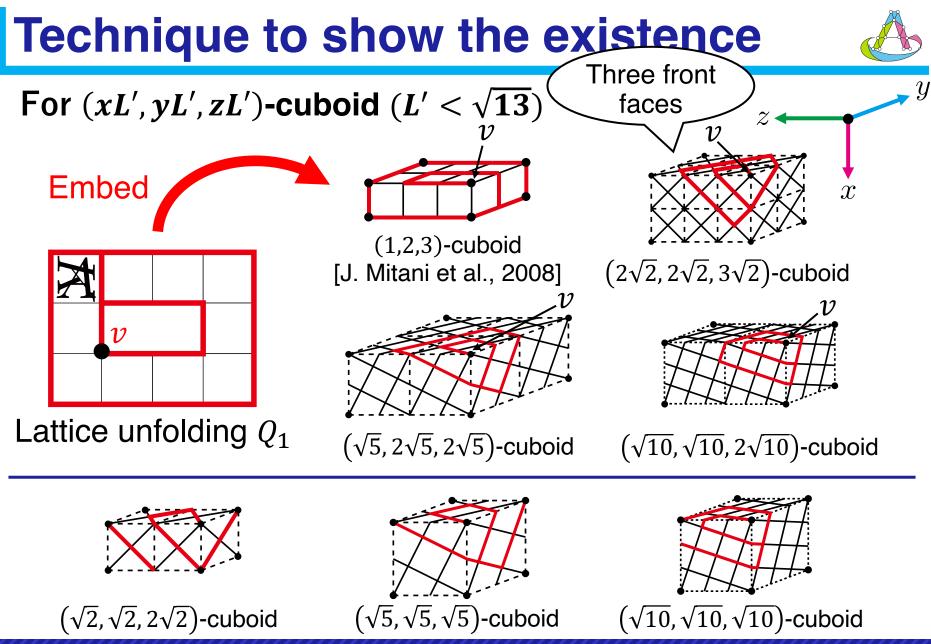


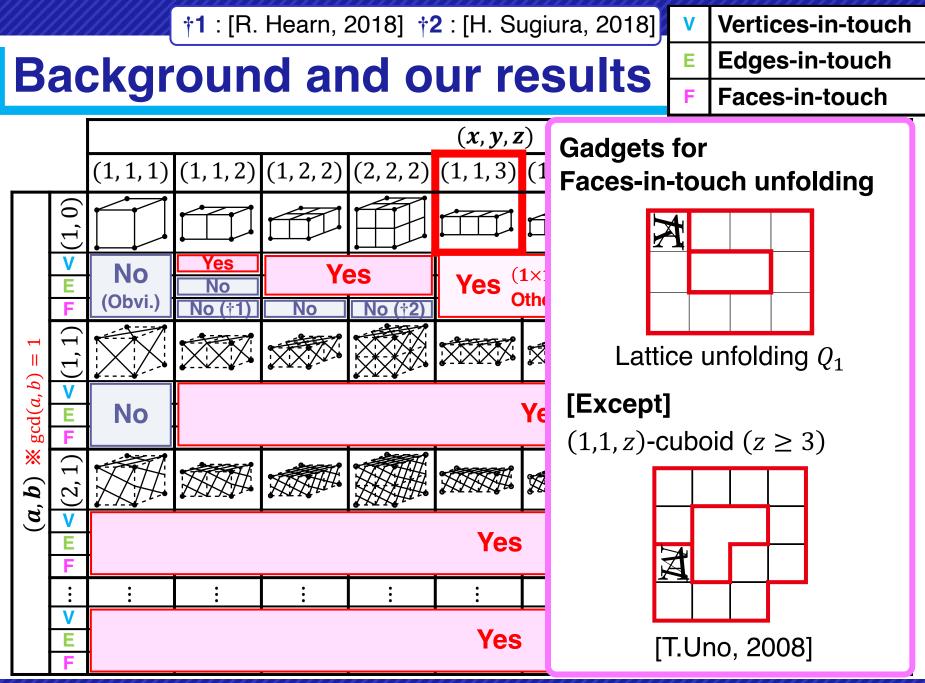


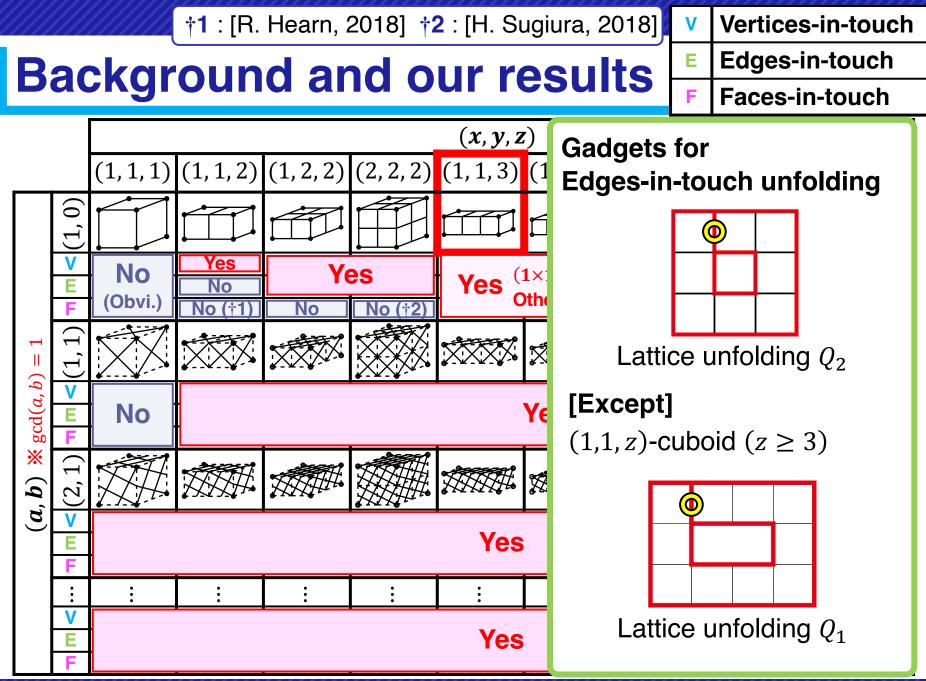
Embed

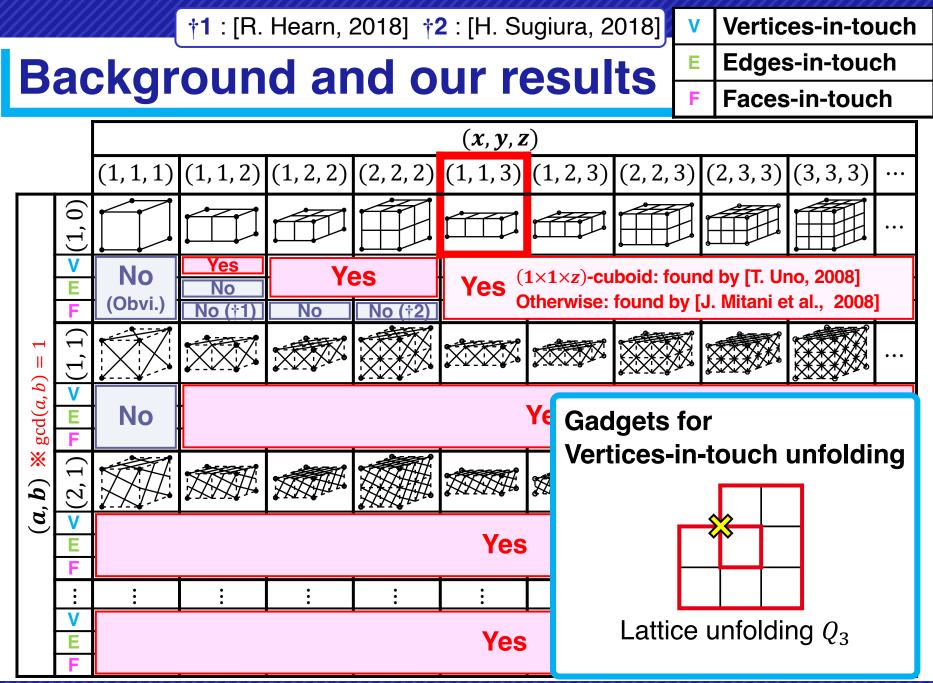


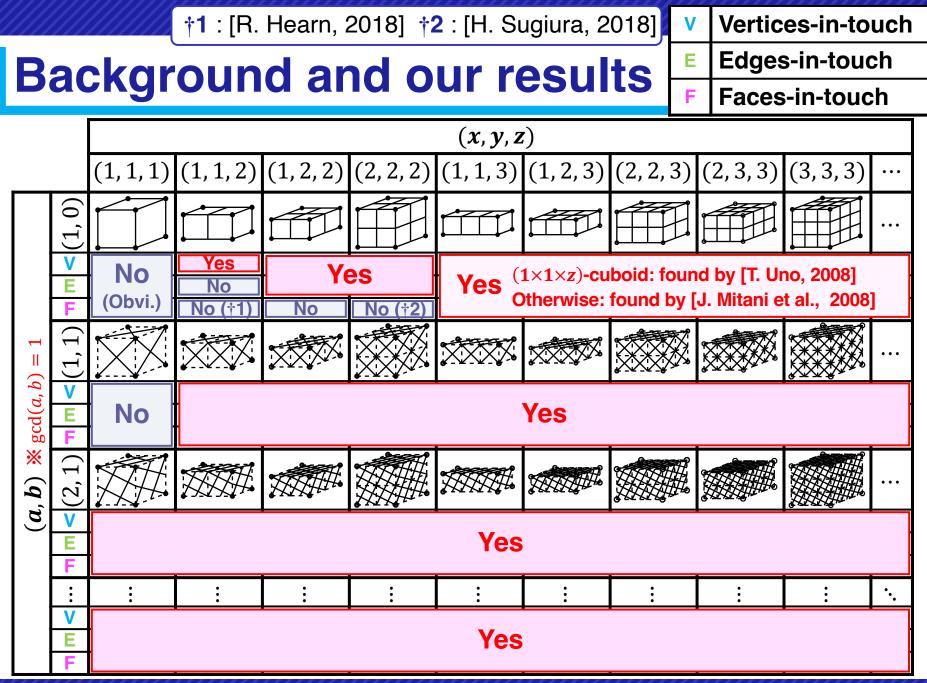


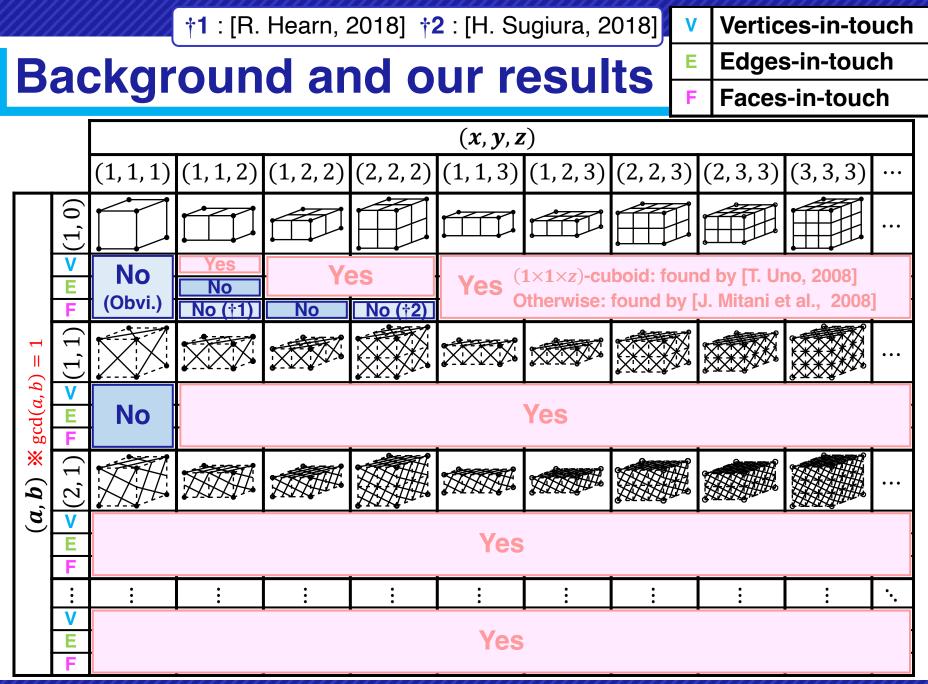


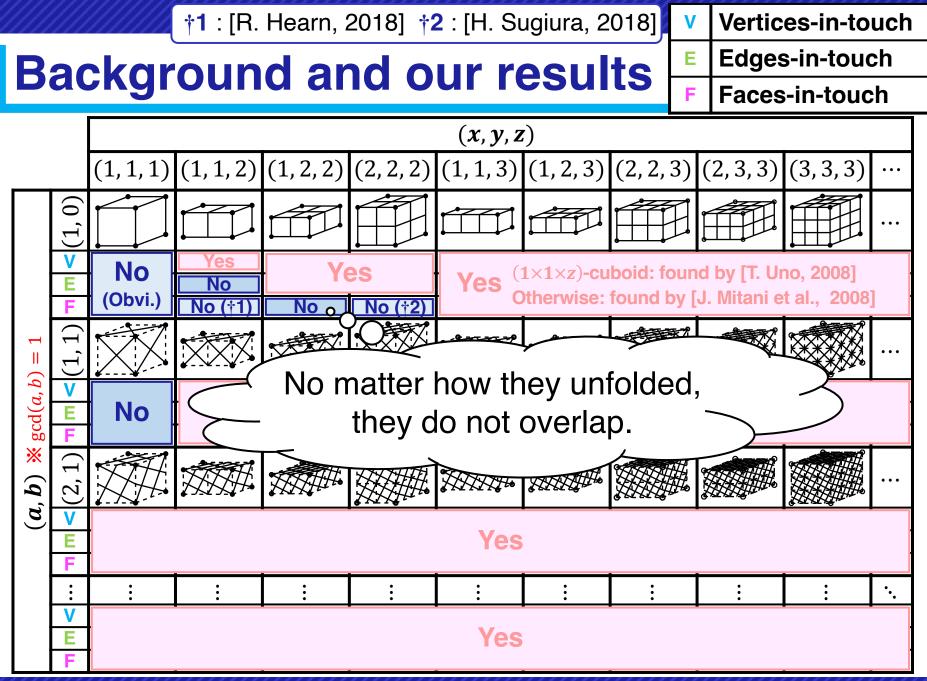


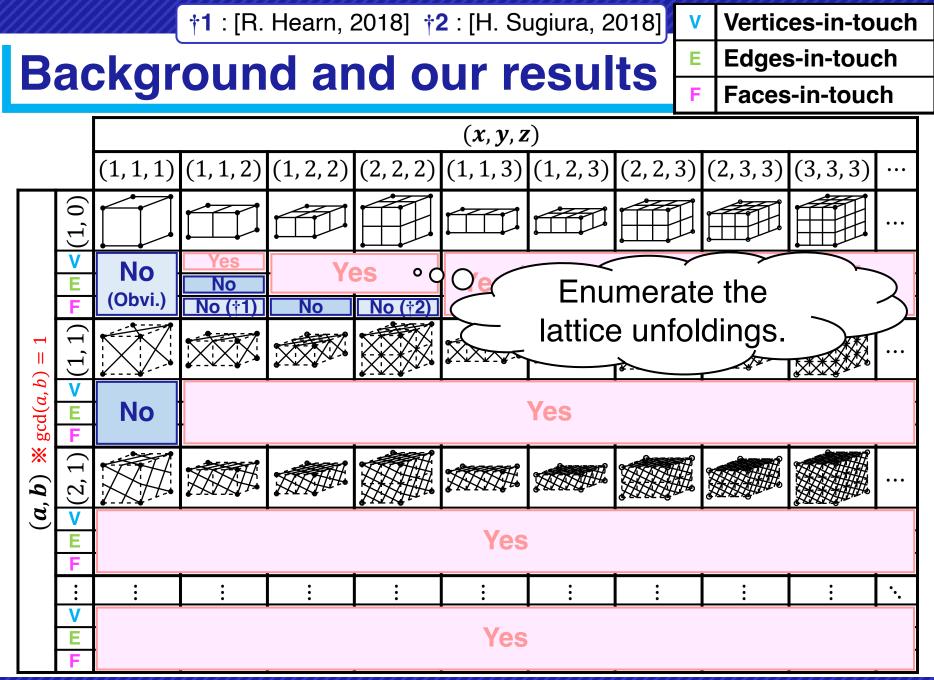


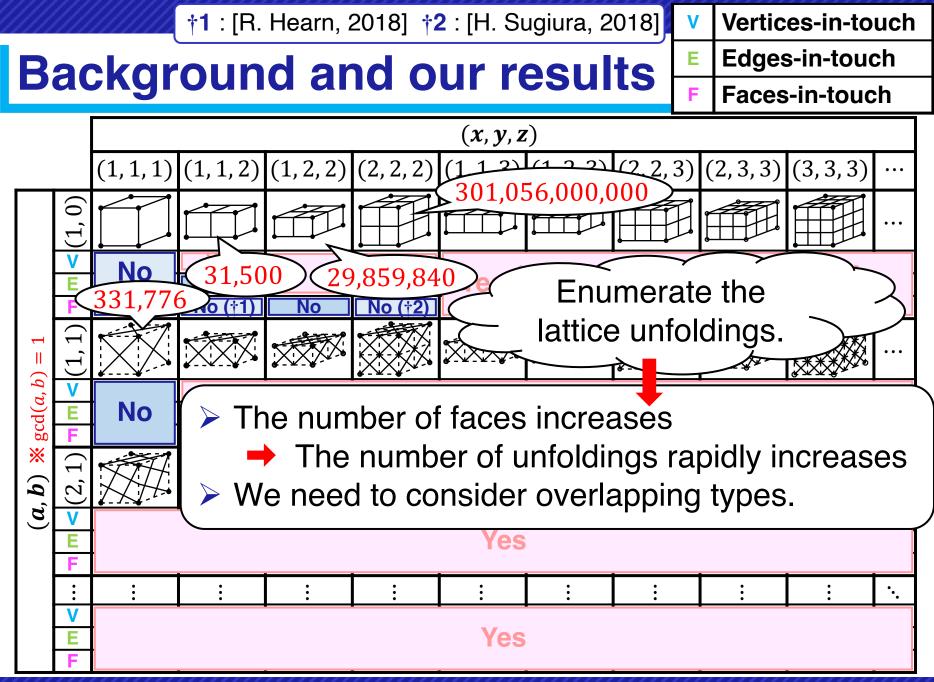


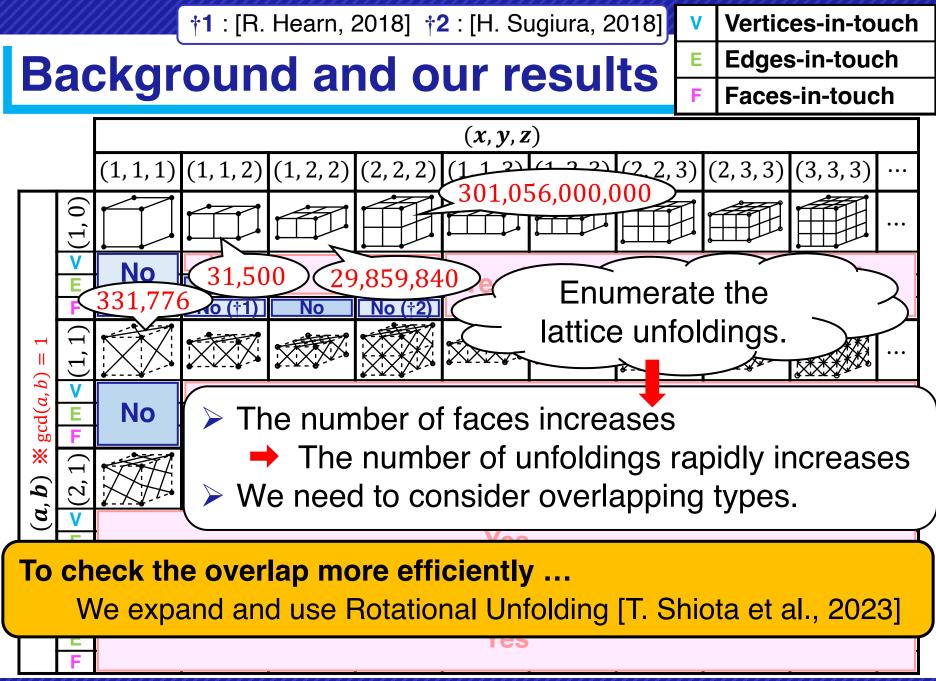










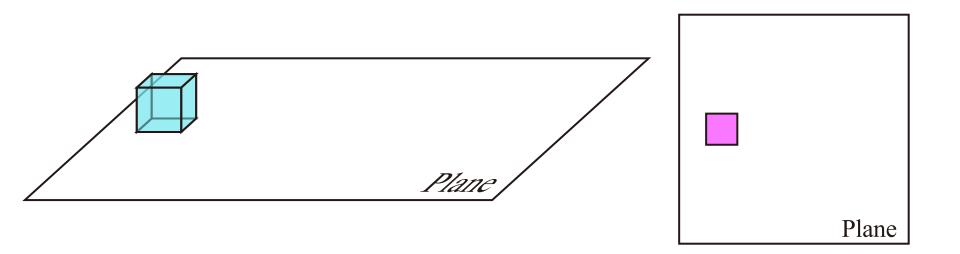


Technique to show

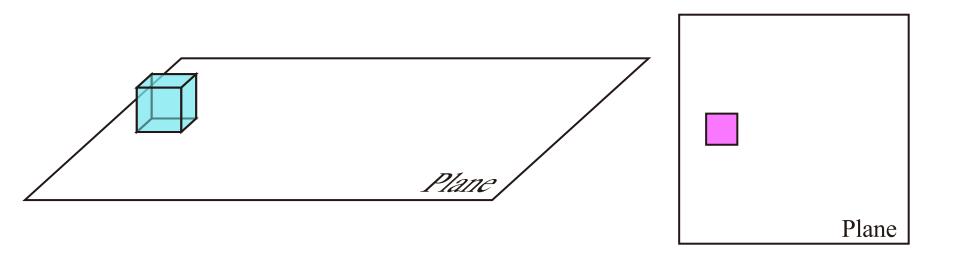
Developed to check the overlaps efficiently.

Rotational Unfolding [T. Smor

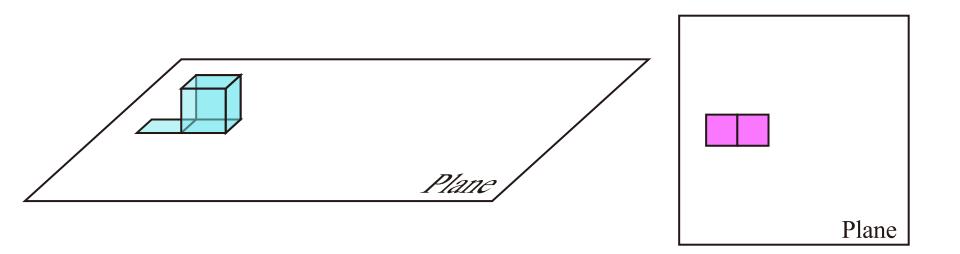
- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.



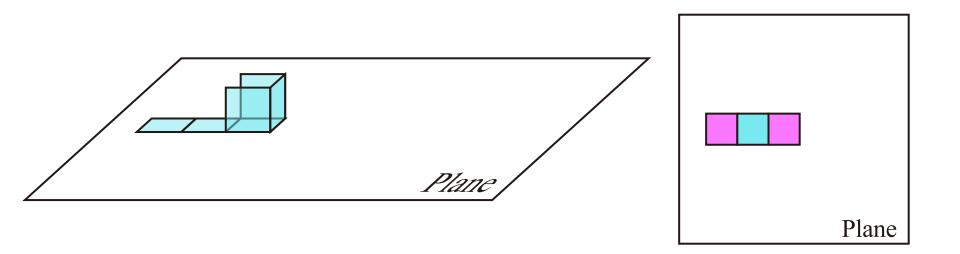
- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.



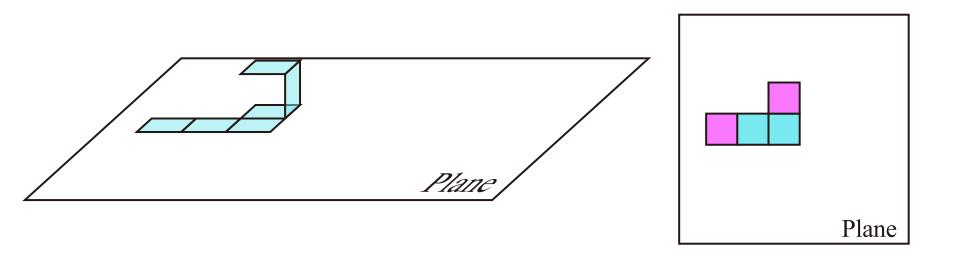
- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.



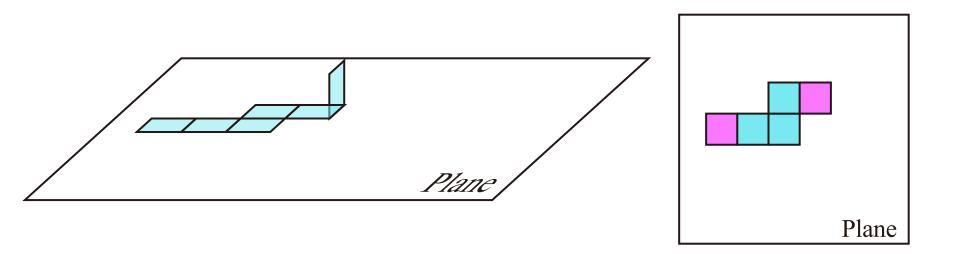
- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.



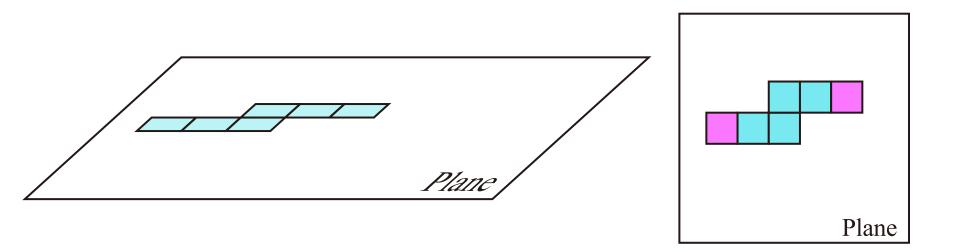
- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.



- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.

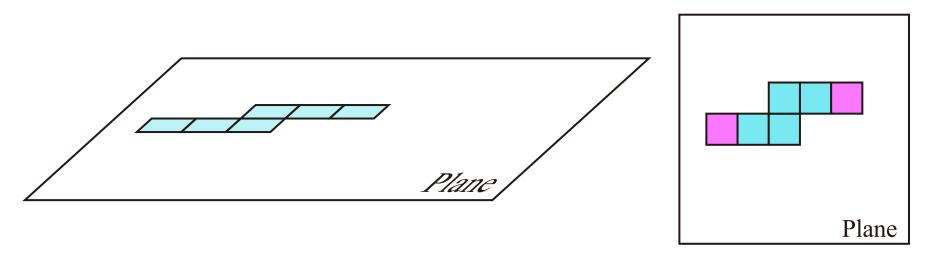


- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.



Rotational Unfolding [T. Shiota et al., 2023]

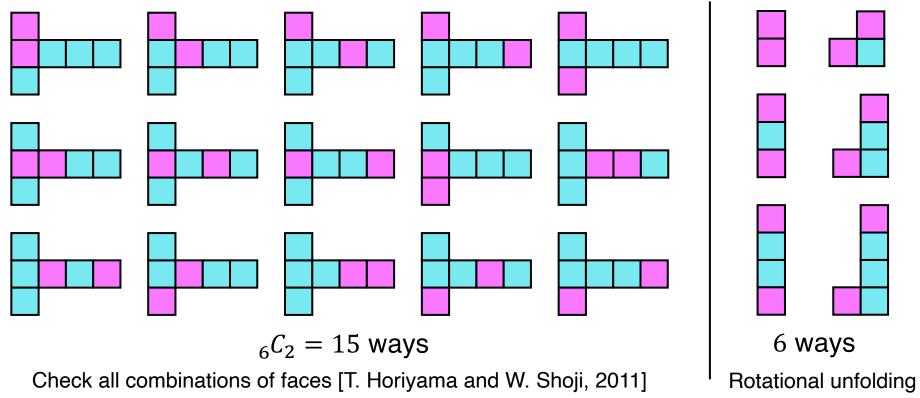
- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.



Q. Why only check the overlap of both end-faces in the path?

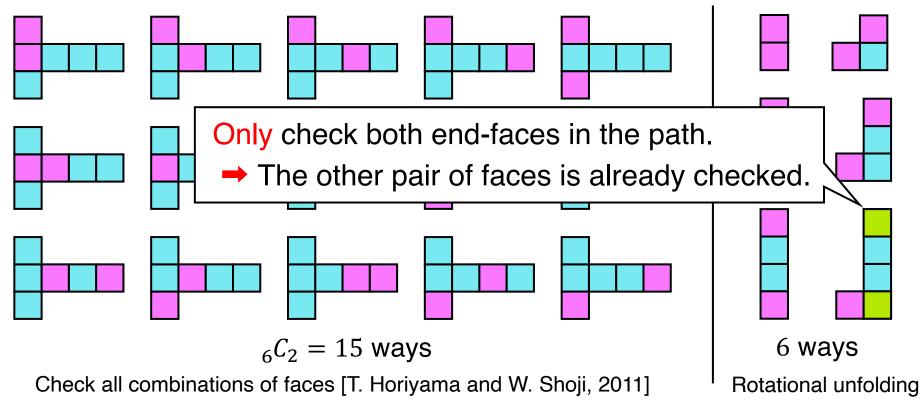
Lemma 1 [T. Shiota et al., 2023]

The path in the edge unfolding that connects two faces is one of the paths enumerated by rotational unfolding.



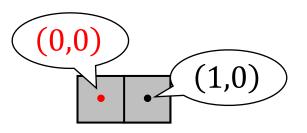
Lemma 1 [T. Shiota et al., 2023]

The path in the edge unfolding that connects two faces is one of the paths enumerated by rotational unfolding.



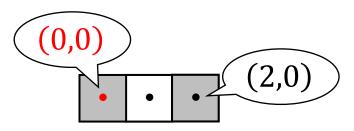
In rotational unfolding, we check for overlaps with each roll.

- 1. Set the center coordinates of one endpoint of the path to (x, y) = (0, 0).
- 2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.
- [Note] The length of one side of the cuboid is 1.



In rotational unfolding, we check for overlaps with each roll.

- 1. Set the center coordinates of one endpoint of the path to (x, y) = (0, 0).
- 2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.
- [Note] The length of one side of the cuboid is 1.



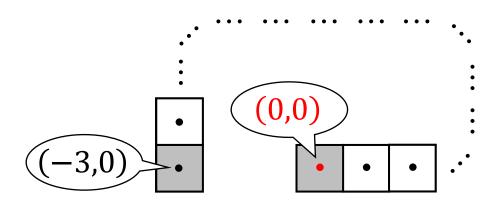
In rotational unfolding, we check for overlaps with each roll.

- 1. Set the center coordinates of one endpoint of the path to (x, y) = (0, 0).
- 2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.
- [Note] The length of one side of the cuboid is 1.



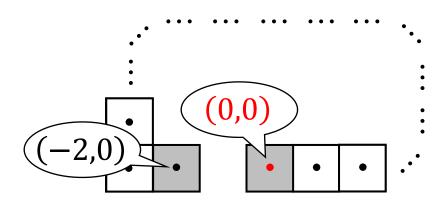
In rotational unfolding, we check for overlaps with each roll.

- 1. Set the center coordinates of one endpoint of the path to (x, y) = (0, 0).
- 2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.
- [Note] The length of one side of the cuboid is 1.

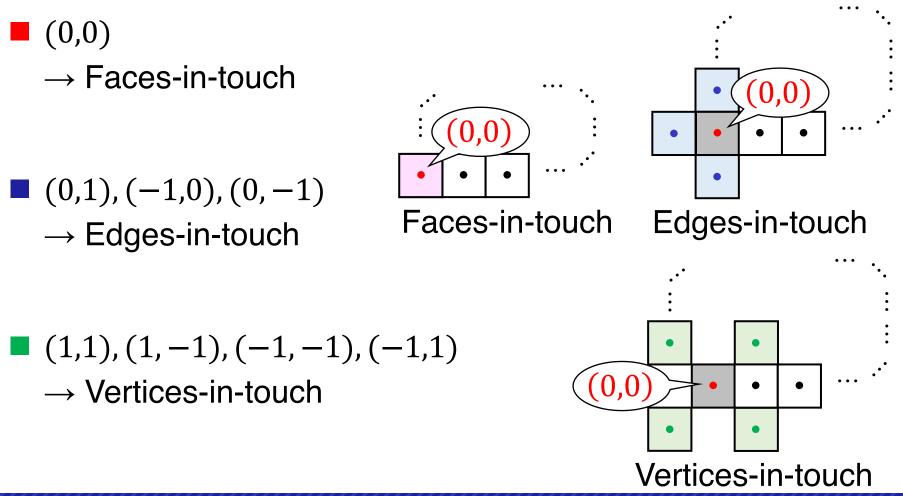


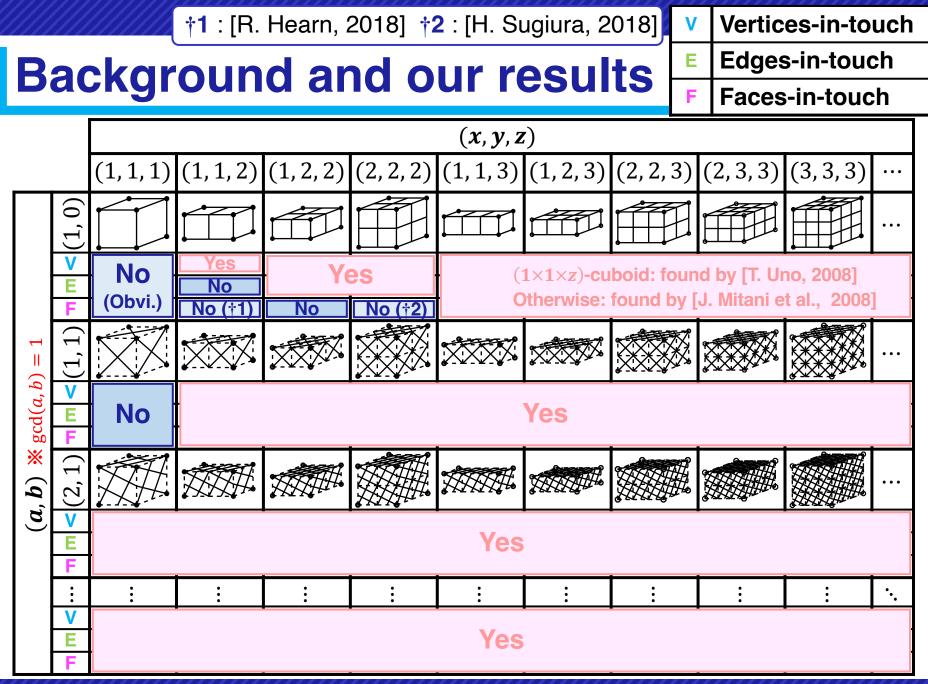
In rotational unfolding, we check for overlaps with each roll.

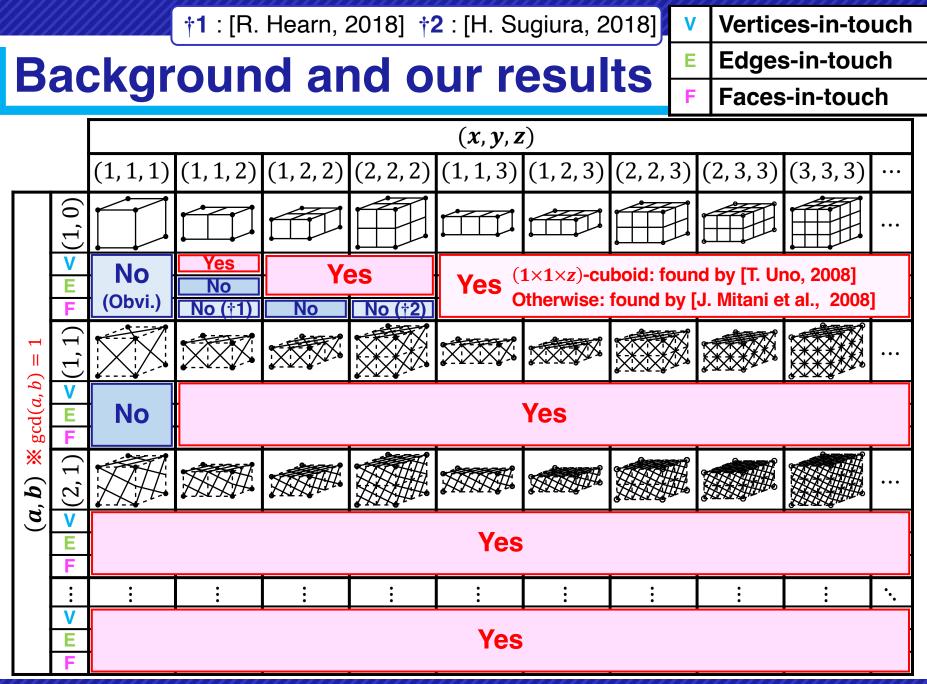
- 1. Set the center coordinates of one endpoint of the path to (x, y) = (0, 0).
- 2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.
- [Note] The length of one side of the cuboid is 1.

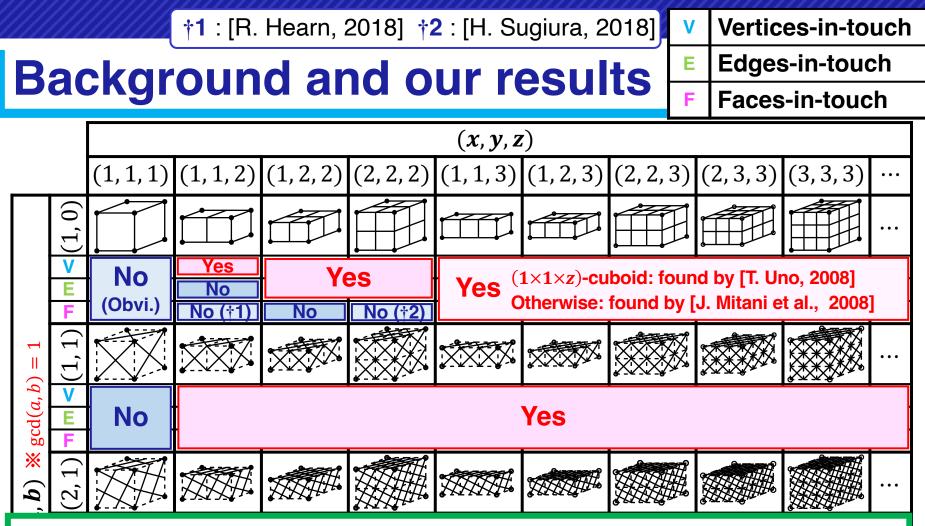


The center coordinates of the other endpoint of the path are...









Future work: Clarify the existence of overlapping unfolding for "tetrahedron" or "octahedron" that can be constructed from the triangular lattice.

