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Let’s consider unfolding a cuboid into a polyomino.
[Note]  A polyomino is a polygon made by connecting multiple

squares along their edges.

Ø Let’s call this type of polyomino
“Lattice unfolding”.

Unfold
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Let’s consider unfolding a cuboid into a polyomino.
[Note]  A polyomino is a polygon made by connecting multiple

squares along their edges.

Ø We call this type of unfolding
“Vertices-in-touch unfolding”.
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Let’s consider unfolding a cuboid into a polyomino.
[Note]  A polyomino is a polygon made by connecting multiple

squares along their edges.

Ø We call this type of unfolding
“Edges-in-touch unfolding”.

Unfold
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Let’s consider unfolding a cuboid into a polyomino.
[Note]  A polyomino is a polygon made by connecting multiple

squares along their edges.

Ø We call this type of unfolding
“Faces-in-touch unfolding”.

Unfold
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Let’s consider unfolding a cuboid into a polyomino.
[Note]  A polyomino is a polygon made by connecting multiple

squares along their edges.

Ø We call this type of unfolding
“Faces-in-touch unfolding”.

Unfold

Hard to understand just 
looking at this figure >:(
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Let’s consider unfolding a cuboid into a polyomino.
[Note]  A polyomino is a polygon made by connecting multiple

squares along their edges.

Ø We call this type of unfolding
“Faces-in-touch unfolding”.

Unfold

Hard to understand just 
looking at this figure >:(

Mr. Kamata and I distribute my hand-made 
3D models of “Faces-in-touch” for each table.
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Let’s consider unfolding a cuboid into a polyomino.
[Note]  A polyomino is a polygon made by connecting multiple

squares along their edges.

Ø We call this type of unfolding
“Faces-in-touch unfolding”.

Unfold

Hard to understand just 
looking at this figure >:(

If you get the model …
Please look at it and unfold the model
After you experience how they overlap …
Please fold the model again & pass it turn on the left/right

Mr. Kamata and I distribute my hand-made 
3D models of “Faces-in-touch” for each table.
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To help understand how to read this table …
From the next slide, define the following three.
(1) Lattice cubes   (2) Lattice cuboids   (3) Lattice unfoldings



Lattice cubes
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Choose two points on a square lattice and construct a square
with these two points as one side. The cuboid assembled with
this square as one face is called a lattice cube.

The square lattice

Definition 1
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Choose two points on a square lattice and construct a square
with these two points as one side. The cuboid assembled with
this square as one face is called a lattice cube.

The square lattice

Definition 1



Lattice cubes

4

Choose two points on a square lattice and construct a square
with these two points as one side. The cuboid assembled with
this square as one face is called a lattice cube.

The square lattice

Definition 1

Fold

The lattice cube



The length of one edge of a cube

5

We assume a square lattice of unit length (=1).
I. Choose a point !(0,0) on the square lattice.
II. Let the coordinates of point & be (', 0) and ( be (0, ))

(a ∈ ℕ, b ∈ ℕ0, a ≥ b).
III. Let / = |&(| = a1 + b1 be the length of one edge of a 

lattice cube.
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We assume a square lattice of unit length (=1).
I. Choose a point !(0,0) on the square lattice.
II. Let the coordinates of point & be (', 0) and ( be (0, ))

(a ∈ ℕ, b ∈ ℕ0, a ≥ b).
III. Let / = |&(| = a1 + b1 be the length of one edge of a 

lattice cube.
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List of lattice cubes

! 1 1 2 2 2 3 ⋯
& 0 1 0 1 2 0 ⋯

( 1 2 2 5 2 2 3 ⋯

(×(
square

⋯

!×!×!
cube ⋯



Lattice cuboids
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A cuboid made by connecting multiple lattice cubes is called a
lattice cuboid. (Note: Lattice cubes ⊂ Lattice cuboids)

Definition 2

The lattice cube

The lattice cuboid

Connect multiple lattice cubes 
together



The three side lengths of a cuboid
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Let /′ be the length of one edge of a lattice cube.
/2 = '1 + )1 (' ∈ ℕ0, ) ∈ ℕ, ' ≥ ), gcd ', ) = 1)

Denote the lattice cuboid as “ 9/2, :/2, ;/2 -cuboid”.
(9, :, ; ∈ ℕ, 9 ≤ : ≤ ;)

…

…… … …

…

…

…

… …
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Lattice unfolding for cuboids
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A lattice unfolding is a polygon obtained by cutting the face of
the cuboid along the edges of unit squares.

Definition 3

The lattice cuboid

Cut along the edges of unit 
squares and unfold it flat.



Lattice unfolding for cuboids

10

A lattice unfolding is a polygon obtained by cutting the face of
the cuboid along the edges of unit squares.

Definition 3

The lattice cuboid

(Note)
Dotted lines           are 
folding lines (No cut)

Cut along the edges of unit 
squares and unfold it flat.
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How do we prove them?

Demonstrate an example of 
overlapping lattice unfolding.
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Unfold

2 2, 2 2, 3 2 -cuboid Lattice unfolding $0
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Unfold

…
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…

2 2, 2 2, 3 2 -cuboid Lattice unfolding $0

% 2, & 2, ' 2 -cuboid (% ≥ 2, & ≥ 2, ' ≥ 3)

Embed
…
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Unfold

…

…

… ……

…

…

… …

…

…

2 2, 2 2, 3 2 -cuboid Lattice unfolding $0

% 2, & 2, ' 2 -cuboid (% ≥ 2, & ≥ 2, ' ≥ 3)

Embed
…

No matter how the cuboid expanded, 
the lattice unfolding can be embedded.

Embed
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Lattice unfolding $0

+

Fold

13

+ Three front 
faces
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270°

Fold

13

Slant height

Center angle



Technique to show the existence

Lattice unfolding $0
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+
13Fold

Embed

13

+

270°

Fold

13+13

10 5

Match up
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Lattice unfolding $0

+

+
13Fold

Embed

Embed

1′, 1′, 1′ -cuboid (11 ≥ 13)

[Note]  !! = #" + %"
(# ∈ ℕ#, % ∈ ℕ, # ≥ %)

+

11

+
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Lattice unfolding $0

+

+
13Fold

Embed

Embed

Embed

[Note]  !! = #" + %"
(# ∈ ℕ#, % ∈ ℕ, # ≥ %)

+

No matter what the size of 
!’ (≥ 13), the lattice 

unfolding can be embedded.

11

1′, 1′, 1′ -cuboid (11 ≥ 13)

+
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2 2, 2 2, 3 2 -cuboid 

5, 2 5, 2 5 -cuboid 10, 10, 2 10 -cuboid 

+

+ +
1,2,3 -cuboid 

[J. Mitani et al., 2008] 

+

Lattice unfolding $0

+

Embed

For 34′, 54′, 64′ -cuboid (41 < 89)
Three front 

faces
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+
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[J. Mitani et al., 2008] 
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2 2, 2 2, 3 2 -cuboid 

5, 2 5, 2 5 -cuboid 10, 10, 2 10 -cuboid 

+

+ +
1,2,3 -cuboid 

[J. Mitani et al., 2008] 

+

Lattice unfolding $0

+

Embed

2, 2, 2 2 -cuboid 5, 5, 5 -cuboid 10, 10, 10 -cuboid 

For 34′, 54′, 64′ -cuboid (41 < 89)
Three front 

faces
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Lattice unfolding /$
[Except] 
1,1, 0 -cuboid 0 ≥ 3
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No Ø The number of faces increases
➡ The number of unfoldings rapidly increases

Ø We need to consider overlapping types.

To check the overlap more efficiently …
We expand and use Rotational Unfolding [T. Shiota et al., 2023] 

)×)×+ -cuboid: found by [T. Uno, 2008]
Otherwise: found by [J. Mitani et al.,  2008]Yes Enumerate the 

lattice unfoldings.
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Technique to show the non-existence

16

Ø Enumerating the path between any two faces by rolling a
polyhedron.

Ø Checking the overlap of both end-faces of a path.

Rotational Unfolding [T. Shiota et al., 2023] 
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Technique to show the non-existence

16

Ø Enumerating the path between any two faces by rolling a
polyhedron.

Ø Checking the overlap of both end-faces of a path.

Plane

Q. Why only check the overlap of both end-faces in the path?

Rotational Unfolding [T. Shiota et al., 2023] 



Technique to show the non-existence

17

The path in the edge unfolding that connects two faces is one
of the paths enumerated by rotational unfolding.

Lemma 1 [T. Shiota et al., 2023] 

!," = 15 ways 6 ways
Rotational unfoldingCheck all combinations of faces [T. Horiyama and W. Shoji, 2011]



Technique to show the non-existence

17

The path in the edge unfolding that connects two faces is one
of the paths enumerated by rotational unfolding.

!," = 15 ways 6 ways

Only check both end-faces in the path.
➡ The other pair of faces is already checked.

Rotational unfoldingCheck all combinations of faces [T. Horiyama and W. Shoji, 2011]

Lemma 1 [T. Shiota et al., 2023] 



Overlap check in lattice unfoldings
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In rotational unfolding, we check for overlaps with each roll.
1. Set the center coordinates of one endpoint of the path to  

(", $) = (0,0).
2. While rolling the cuboid, sequentially compute the center 

coordinates of the other endpoint.
[Note] The length of one side of the cuboid is 1.
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The computation process for the other endpoint's coordinates
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Overlap check in lattice unfoldings

19

The center coordinates of the other endpoint of the path are...
n (0,0)
→ Faces-in-touch

n (0,1), (−1,0), (0, −1)
→ Edges-in-touch

n (1,1), (1, −1), (−1,−1), (−1,1)
→ Vertices-in-touch … …

… …

…
…

…

…

Vertices-in-touch

0,0

… …

… …

…
…

…
…

Edges-in-touch

0,0

… …

… … …

…

…

Faces-in-touch

0,0
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Future work: Clarify the existence of overlapping 
unfolding for “tetrahedron” or “octahedron” that 
can be constructed from the triangular lattice. Tetrahedron

)×)×+ -cuboid: found by [T. Uno, 2008]
Otherwise: found by [J. Mitani et al.,  2008]Yes


