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Let’s consider unfolding a cuboid into a polyomino.

[Note] A polyomino is a polygon made by connecting multiple
squares along their edges.

» Let’s call this type of polyomino
“Lattice unfolding”.
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Let’s consider unfolding a cuboid into a polyomino.

[Note] A polyomino is a polygon made by connecting multiple
squares along their edges.

» We call this type of unfolding
“Edges-in-touch unfolding”.




Let’s consider unfolding a cuboid into a polyomino.

[Note] A polyomino is a polygon made by connecting multiple
squares along their edges.

» We call this type of unfolding
“Faces-in-touch unfolding”.




Hard to understand just
looking at this figure >:(
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» We call this type of unfolding
“Faces-in-touch unfolding”.




Hard to understand just
looking at this figure >:(

Mr. Kamata and | distribute my hand-made
3D models of “Faces-in-touch” for each table.
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» We call this type of unfolding
“Faces-in-touch unfolding”.




Hard to understand just
looking at this figure >:(
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Mr. Kamata and | distribute my hand-made

3D models of “Faces-in-touch” for each table.
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/If you get the model ...
Please look at it and unfold the model

After you experience how they overlap ..
QDIease fold the model again & pass it turn on the Ieft/rlght Y,
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/To help understand how to read this table ...

From the next slide, define the following three.

(

1) Lattice cubes (2) Lattice cuboids (3) Lattice unfoldings




Lattice cubes

- Definition 1

Choose two points on a square lattice and construct a square
with these two points as one side. The cuboid assembled with
this square as one face is called a lattice cube.
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The square lattice



Lattice cubes

- Definition 1

Choose two points on a square lattice and construct a square
with these two points as one side. The cuboid assembled with
this square as one face is called a lattice cube.

| /
rearasasanaaas

'!II".......I....
(gt LIl
S8baEaaattaaaans

The square lattice

-

. ] ]




|Lattice cubes b

Definition 1

Choose two points on a square lattice and construct a square
with these two points as one side. The cuboid assembled with
this square as one face is called a lattice cube.

The lattice cube
The square lattice



The length of one edge of a cube

We assume a square lattice of unit length (=1).

|.  Choose a point 0(0,0) on the square lattice.

Il. Letthe coordinates of point A be (a,0) and B be (0, b)
(a€eN, beN*,a>b).

IIl. Let L = |AB| = Va2 + bZ2 be the length of one edge of a
lattice cube.
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The length of one edge of a cube

We assume a square lattice of unit length (=1).
|.  Choose a point 0(0,0) on the square lattice.
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The length of one edge of a cube

We assume a square lattice of unit length (=1).
|.  Choose a point 0(0,0) on the square lattice.

Il. Letthe coordinates of point A be (a,0) and B be (0, b)
(a€eN, beN*,a>b).

IIl. Let L = |AB| = Va2 + b2 be the length of one edge of a
lattice cube.




|The side length of a cube

List of lattice cubes

a 1 1 2 2 2
b 0 1 0 1 2
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|Lattice cuboids b

-| Definition 2

A cuboid made by connecting multiple lattice cubes is called a
lattice cuboid. (Note: Lattice cubes c Lattice cuboids)

Connect multiple lattice cubes
together

The lattice cuboid




The three side lengths of a cuboid

Let L' be the length of one edge of a lattice cube.
L' = \/a2 + b2 (a €N, b€eN,a=>b,gcd(a,b) =1)

Denote the lattice cuboid as “(xL', yL', zL")-cuboid”.
(x,v,z€N, x <y <2z)
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(a,b)  gcd(a,b) =1




Definition 3

A lattice unfolding is a polygon obtained by cutting the face of
the cuboid along the edges of unit squares.

Cut along the edges of unit
squares and unfold it flat.




| Definition 3

A lattice unfolding is a polygon obtained by cutting the face of
the cuboid along the edges of unit squares.

o :' : Cut along the edges of unit
'4 : 1 squares and unfold it flat.
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How do we prove them?
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(1x1xz)-cuboid: found by [T. Uno, 2008]
Otherwise: found by [J. Mitani et al., 2008]
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overlapping lattice unfolding.
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(1x1xz)-cuboid: found by [T. Uno, 2008]
Otherwise: found by [J. Mitani et al.,
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Technique to show the existence
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(2v2, 2v/2,3v/2)-cuboid Lattice unfolding Q,




Technique to show the existence
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(2v/Z, 2v2, 3v2)-cuboid Lattice unfolding Q,
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No matter how the cuboid expanded,
the lattice unfolding can be embedded.
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|Technique to show the existence %

Lattice unfolding Q4
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faces

Lattice unfolding Q4




|Technique to show the existence %
Fold V, ’\/1_3

Lattice unfolding Q4 Vi3

o
Center angle




Technique to show the existence /%
Embed




Technique to show the existence /%
Embed

V13

JEmbed

Lattice unfolding Q4

[Note] L' = VaZ + b2

(a e NT,b € N,a = b) /‘

(L’,L', L")-cuboid (L' = 13)




|Technique to show the existence %

No matter what the size of

L’ (= V13), the lattice
unfolding can be embedded.

Lattice unfolding Q, Embed

[Note] L' = Va2 + b2
(a eNT,beN,a = b)

(L’,L', L")-cuboid (L' = 13)




For (xL',yL', zL")-cuboid (L' < v13)
v

(1,2,3)-cuboid
[J. Mitani et al., 2008]

AT

Lattice unfolding Q1 (5, 5y5,2v5)-cuboid ~ (v10,v10, 2v10)-cuboid




For (xL',yL', zL")-cuboid (L' < v13)
v

(1,2,3)-cuboid SVAVAVA
[J. Mitani et al., 2008] (2\/2 242, 3@-Cuboid
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Lattice unfolding Q1 (5, 5y5,2v5)-cuboid ~ (v10,v10, 2v10)-cuboid
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(vV2,/2, 24/2)-cuboid (v/5,+/5,+/5)-cuboid
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|Background and our results —_————— ‘
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No matter how they unfolded, '
they do not overlap.
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Background and our results
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| > The number of faces increases
=» The number of unfoldings rapidly increases

» We need to consider overlapping types.
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» The number of faces increases
=» The number of unfoldings rapidly increases
» We need to consider overlapping types.

(a,b) * gcd(a,b) =1

=|(2,1)

J

To check the overlap more efficiently ...
We expand and use Rotational Unfolding [T. Shiota et al., 2023]




Technique to sho

Developed to check the
overlaps efficiently.

- Rotational Unfolding

» Enumerating the path between any two faces by rolling a
polyhedron.
» Checking the overlap of both end-faces of a path.
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Technique to show the non-existence/\

-| Rotational Unfolding [T. Shiota et al., 2023]
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polyhedron.
» Checking the overlap of both end-faces of a path.
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Technique to show the non-existence/\

-| Rotational Unfolding [T. Shiota et al., 2023]

» Enumerating the path between any two faces by rolling a
polyhedron.
» Checking the overlap of both end-faces of a path.
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Q. Why only check the overlap of both end-faces in the path?
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|Technique to show the non-existence/\

Lemma 1 [T. Shiota et al., 2023]

The path in the edge unfolding that connects two faces is one

of the paths enumerated by rotational unfolding.

cC> = 15 ways
Check all combinations of faces [T. Horiyama and W. Shoji, 2011]

6 ways
Rotational unfolding



|Technique to show the non-existence/\

Lemma 1 [T. Shiota et al., 2023]

The path in the edge unfolding that connects two faces is one

of the paths enumerated by rotational unfolding.

—1

Only check both end-faces in the path.

=> The other pair of faces is already checked. LI‘\

| S— —_ | —

cC> = 15 ways
Check all combinations of faces [T. Horiyama and W. Shoji, 2011]

6 ways
Rotational unfolding



|0verlap check in lattice unfoldings %

In rotational unfolding, we check for overlaps with each roll.

1. Set the center coordinates of one endpoint of the path to
(x,y) = (0,0).

2. While rolling the cuboid, sequentially compute the center
coordinates of the other endpoint.

[Note] The length of one side of the cuboid is 1.

The computation process for the other endpoint's coordinates

18
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|0verlap check in lattice unfoldings %

The center coordinates of the other endpoint of the path are...
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Future work: Clarify the existence of overlapping
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unfolding for “tetrahedron” or “octahedron” that

can be constructed from the triangular lattice.




