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Sudoku
nA logic-based globally 
popular pencil puzzle.
nAlso known as 
"Number Place."
nThe objective: Fill a 9×9 
grid with numbers so that 
each row, each column, 
and each of the nine 3×3 
sub-grids contain all of the 
digits from 1 to 9.
nA solution must be unique.

1



An example to solve Sudoku puzzle 
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An example to solve Sudoku puzzle 
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We cannot use 1, 2, 4, 6, 7, 8



An example to solve Sudoku puzzle 
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We also cannot use 5, 8, 9



An example to solve Sudoku puzzle 
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3

We cannot use 1, 2, 4, 6, 7, 8
and we also cannot use 5, 8, 9
->  This cell must be 3



An example to solve Sudoku puzzle 
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An example to solve Sudoku puzzle 
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Banned instance(multi solution)
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One of solution
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Another solution
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One of solution
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Another multi solution example
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Critical sets
nCritical sets refer to the 
minimal subset of given 
clues that still ensure a 
unique solution.
nTheir presence is pivotal in 
determining the solvability of 
a puzzle.
nIn Sudoku, It is known the 
size of critical sets is 17 (It 
has been shown that with 16 
or fewer clues, the solution is 
not unique)．
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The example of 
ensuring a 
unique solution 
(#clues = 17)



Latin square and its critical sets
nWhen we remove the 𝟑×𝟑 sub-
grids constraint from Sudoku, 
we call it (𝟗×𝟗)Latin square 
puzzle. 
nWith only row and column 
constraints, as in a Latin square, 
the known minimum number of 
clues required to ensure a 
unique solution is 20. 
nIt has not been proven whether 
or not a puzzle with 19 or fewer 
clues exists.
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The example of 
ensuring a 
unique solution 
(#clues = 20)



nWe propose a puzzle where numbers 1-9 
must be placed once in each row, column, and 
each nonomino (a designated set of 9 adjacent 
cells). 
nWe call it Nonomino Sudoku.
nWhat is the size of critical set?
nHow should the 
segments be designated?

Nonomino-Sudoku
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Theorem
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The size of a 
critical set of 
Nonomino 
Sudoku is 8

Theorem 1



In this study, we further generalize Nonomino 
Sudoku to ``𝑛-omino Sudoku’’, which is defined 
on an 𝑛 × 𝑛 grid. 
The objective: numbers 1 to 𝑛 must be placed 
once in each row, column, and each n-omino (a 
designated set of 9 adjacent cells). 

𝑛-omino Sudoku
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The size of a critical set of 
nonomino Sudoku is 𝑛 − 1 .

Theorem 2



Degeneracy
nOrdinary Sudoku has 𝟐𝟕
constraints: 
𝟗 vertical, 𝟗 horizontal, and 𝟗
of the 3×3 sub-grids.
nThe 𝒏-omino Sudoku is 
derived from the 𝒏×𝒏 Latin 
square’s  constraints by 
adding 𝒏 constraints of 
𝒏-omino. This results in a 
total of 3𝒏 constraints.
nWe'll refer to the number of 
these added 𝒏-omino
constraints that overlap with 
the Latin square constraints 
as the "degeneracy".
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The example of 
Degeneracy = 1



Degeneracy and the size of clues
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There exists an 𝑛-omino Sudoku instance 
with degeneracy 0 or 1
such that its critical set has size 𝑛 − 1. 

Corollary 1

Our research focuses on the relationship between 
Degeneracy and the number of clues in Sudoku.

There are no 𝑛-omino Sudoku instance with 
degeneracy 3 or more
such that its critical set has size 𝑛 − 1. 

Theorem 3



No solution without any clue
nWe discussed the uniqueness of 
solutions.
nIntuitively, an instance with a small 
number of clues tends to have more 
solutions, or more clues tend to 
make a solution unique. 
nThus, we might expect that an 
instance with no clue has many 
solutions. 
nHowever, In 𝑛 -omino Sudoku, 
depending on the placement of the 
n-ominoes, there may be no solution.
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No clue instance with no solution
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Let 𝑘 and 𝑛 be positive 
integers satisfying 
𝑛 ≤ 2𝑘 + 4. Then, there is 
an 𝑛-omino Sudoku 
instance with degeneracy 
𝑘 and no clue such that it 
has no solution.

Theorem 3

No solution without any clue.


