一般セッション6 [33S]

整面凸多面体の重なりを持たない 辺展開図の数え上げ

2023年度 冬のLAシンポジウム

〇 塩田 拓海(九州工業大学)
榎本 優大(北海道大学)
堀山 貴史(北海道大学)
斎藤 寿樹(九州工業大学)
2024年 2月 21日(水)

定義 1 [R. Uehara, 2018]

多面体の辺に切れ込みを入れて、平坦に開いた多角形を, <mark>辺展開図</mark>という.

それぞれ左側の立方体を太線に沿って切ると…

定義 1 [R. Uehara, 2018]

多面体の辺に切れ込みを入れて、平坦に開いた多角形を、 辺展開図という.

それぞれ左側の立方体を太線に沿って切ると…

| 定義 2 | 全ての面が,正多角形で構成される(辺の長さが等しい) | 凸多面体を,<mark>整面凸多面体</mark>という_

切頂十二面体 [T. Horiyama and W. Shoji, 2011]

切頂二十面体 [T. Horiyama and W. Shoji, 2011]

切頂十二面体 [T. Horiyama and W. Shoji, 2011]

切頂二十面体 [T. Horiyama and W. Shoji, 2011]

切頂十二面体 [T. Horiyama and W. Shoji, 2011]

切頂二十面体 [T. Horiyama and W. Shoji, 2011]

切頂十二面体 [T. Horiyama and W. Shoji, 2011]

切頂二十面体 [T. Horiyama and W. Shoji, 2011]

切頂十二面体 [T. Horiyama and W. Shoji, 2011]

切頂二十面体 [T. Horiyama and W. Shoji, 2011]

本研究の成果

63 種類の整面凸多面体に対し,重なりを持たない辺展開図の個数およびその割合を示した。

半正多面体における主結果

半正多面体	#(辺展開図) [T. Horiyama et al., 2013]	#(重なりを持たない辺展開図)
変形立方体	89,904,012,853,248	85,967,688,920,076
切頂十二面体	4,982,259,375,000,000,000	931,603,573,888,462,350
切頂二十面体	375,291,866,372,898,816,000	366,359,657,802,290,909,354

ジョンソンの立体における主結果(1)

ジョンソンの立体	#(辺展開図) [T. Horiyama et al., 2013]	#(重なりを持たない辺展開図)
J20	29,821,320,745	27,158,087,415
J21	8,223,103,375,490	6,297,186,667,720
J24	5,996,600,870,820	5,492,624,228,190
J32	699,537,024,120	699,433,603,320
J33	745,208,449,920	745,198,979,400

ジョンソンの立体における主結果 (2)

ジョンソンの立体	#(辺展開図) [T. Horiyama et al., 2013]	#(重なりを持たない辺展開図)
J34	193,003,269,869,040	190,653,702,525,040
J38	270,745,016,304,350	214,085,775,357,270
J39	272,026,496,000,000	215,087,798,524,180
J44	5,295,528,588	5,231,781,954
J45	13,769,880,349,680	13,386,219,088,644

ジョンソンの立体における主結果(3)

ジョンソンの立体	#(辺展開図) [T. Horiyama et al., 2013]	#(重なりを持たない辺展開図)
J54	75,973	75,749
J55	709,632	705,144
J56	707,232	702,520
J57	6,531,840	6,457,860
J58	92,724,962	92,219,782

ジョンソンの立体における主結果(4)

ジョンソンの立体	#(辺展開図) [T. Horiyama et al., 2013]	#(重なりを持たない辺展開図)
J59	1,651,482,010	1,632,941,030
J60	1,641,317,568	1,621,738,522
J61	28,745,798,400	28,183,512,978
J66	54,921,311,280	39,055,563,000
J67	90,974,647,120,896	43,437,626,181,464

アルキメデスの角柱における主結果

n角柱	#(辺展開図) [T. Horiyama et al., 2013]	#(重なりを持たない辺展開図)
24 角柱	639,620,518,118,400	597,547,526,278,102
25 角柱	2,486,558,615,814,025	2,270,951,013,426,530
26 角柱	9,651,161,613,824,796	8,680,724,875,408,140
27 角柱	37,403,957,244,654,675	33,593,039,475,394,300
28 角柱	144,763,597,316,784,768	128,484,071,528,042,000
29 角柱	559,560,282,425,278,229	273,052,412,937,434,000
30 角柱	2,160,318,004,043,512,500	1,012,562,467,010,050,000
31角柱	8,331,163,769,982,715,231	3,755,308,489,795,020,000
32 角柱	32,095,304,749,163,937,792	13,910,558,120,316,400,000
33 角柱	123,524,473,883,545,449,825	51,464,102,399,119,800,000
34 角柱	474,969,297,739,230,927,564	190,077,650,531,107,000,000
35 角柱	1,824,745,126,233,358,110,635	694,876,093,525,600,000,000
36 角柱	7,004,614,136,879,907,849,600	2,380,408,316,368,090,000,000
37 角柱	26,867,730,730,869,118,775,917	8,734,608,096,670,700,000,000
38 角柱	102,981,783,095,242,000,000,000	31,927,951,665,245,000,000,000
39角柱	394,447,279,575,099,000,000,000	117,143,971,138,672,000,000,000
40 角柱	1,509,843,372,596,510,000,000,000	385,268,000,158,423,000,000,000
41角柱	5,775,682,482,451,350,000,000,000	1,409,268,044,697,380,000,000,000
42 角柱	22,080,875,606,379,200,000,000,000	5,178,957,938,434,480,000,000,000

アルキメデスの角柱における主結果

12

アルキメデスの角柱における主結果

12

アルキメデスの反角柱における主結果

m 反角柱	#(辺展開図) [T. Horiyama et al., 2013]	#(重なりを持たない辺展開図)
12 反角柱	51,599,794,176	49,743,531,024
13 反角柱	383,142,771,674	369,359,503,344
14 反角柱	2,828,107,288,188	2,726,368,290,352
15 反角柱	20,768,716,848,000	20,021,578,135,380
16 反角柱	151,840,963,183,392	146,378,600,602,880
17 反角柱	1,105,779,284,582,140	1,013,491,325,102,940
18 反角柱	8,024,954,790,380,540	1,501,154,452,845,900
19 反角柱	58,059,628,319,357,300	13,038,527,513,687,400
20 反角柱	418,891,171,182,561,000	98,027,112,294,661,100
21 反角柱	3,014,678,940,049,370,000	732,157,627,679,302,000
22 反角柱	21,646,865,272,061,200,000	5,463,662,878,677,080,000
23 反角柱	155,113,904,634,576,000,000	40,508,628,620,513,100,000
24 反角柱	1,109,391,149,998,440,000,000	298,293,520,418,401,000,000
25 反角柱	7,920,708,398,483,720,000,000	2,188,171,009,006,050,000,000
26 反角柱	56,460,916,728,463,100,000,000	15,982,421,259,908,100,000,000
27 反角柱	401,873,068,071,158,000,000,000	100,599,073,148,261,000,000,000
28 反角柱	2,856,496,726,273,360,000,000,000	725,756,982,845,834,000,000,000
29 反角柱	20,277,959,821,998,000,000,000,000	5,224,196,129,087,410,000,000,000
30 反角柱	143,779,866,504,299,000,000,000,000	37,518,568,275,655,300,000,000,000
31 反角柱	1,018,331,261,238,040,000,000,000,000	272,565,329,790,964,000,000,000,000
32 反角柱	7,204,899,406,395,020,000,000,000,000	2,207,488,168,172,480,000,000,000,000

アルキメデスの [m] 反角柱

アルキメデスの反角柱における主結果 🤞

14

アルキメデスの [*m*] 反角柱

アルキメデスの反角柱における主結果

アルキメデスの反角柱における主結果

定理 3 (双対) [R. Uehara, 2018]

多面体 Q の面の集合を V_Q , 隣接する2面 を結ぶ辺の集合を E_Q とする時, Q はグラフ $G_Q = (V_Q, E_Q)$ として見ることができる.

定理 3 (双対) [R. Uehara, 2018]

多面体 Q の面の集合を V_Q , 隣接する2面 を結ぶ辺の集合を E_Q とする時, Q はグラフ $G_Q = (V_O, E_O)$ として見ることができる.

定理 3 (双対) [R. Uehara, 2018]

多面体 Q の面の集合を V_Q , 隣接する2面 を結ぶ辺の集合を E_Q とする時, Q はグラフ $G_Q = (V_Q, E_Q)$ として見ることができる.

定理 3 (双対) [R. Uehara, 2018]

多面体 Q の面の集合を V_Q , 隣接する2面 を結ぶ辺の集合を E_Q とする時, Q はグラフ $G_Q = (V_Q, E_Q)$ として見ることができる.

Qの辺展開図の個数の数え上げ = G_o の全域木の個数の数え上げ

 G_Q の全域木の個数は ZDD を用いて数え上げることができる

辺 <i>e</i> ₀ :頂点 0 一頂点 2
辺 <i>e</i> ₁ :頂点 0 一頂点 1
辺 e ₂ :頂点 0 一頂点 3
辺 <i>e</i> 3:頂点 1 一頂点 2
辺 <i>e</i> 4:頂点 1 一頂点 3
辺

 G_{Q} の全域木の個数は ZDD を用いて数え上げることができる

辺 <i>e</i> _0:頂点 0 一頂点 2
辺 <i>e</i> ₁ :頂点 0 一頂点 1
辺 e ₂ :頂点 0 一頂点 3
辺 e ₃ :頂点 1 一頂点 2
辺 e ₄ :頂点 1 一頂点 3
辺 <i>e</i> 5:頂点 2 一頂点 3

✓ $\{e_0, e_1, e_2, \cdots, e_n\}$ ✓ $\{e_0, e_2, e_3, \cdots, e_{n-1}\}$: ✓ $\{e_2, e_3, e_5, \cdots, e_n\}$

✓ $\{e_0, e_1, e_2, \cdots, e_n\}$ ✓ $\{e_0, e_2, e_3, \cdots, e_{n-1}\}$: ✓ $\{e_2, e_3, e_5, \cdots, e_n\}$

▶ 貪欲的な手法 [T. Horiyama and W. Shoji., 2011]

Step 1. 全域木の個数を数え上げる ZDD を構築する

Step 2. ① の節点に到達する集合を
列挙する(ZDD を展開する)
Step 3. 各集合に対応する辺展開図が
重なりを持つか確認

 $\checkmark \{e_0, e_1, e_2, \cdots, e_n\}$

▶ 貪欲的な手法 [T. Horiyama and W. Shoji., 2011] Step 1. 全域木の個数を数え上げる ZDD を構築する z_S Step 2. 1 の節点に到達する集合を 列挙する(ZDD を展開する) Step 3. 各集合に対応する辺展開図が 重なりを持つか確認 辺展開図が莫大にあると 現実的な時間で確認できない $\overline{\{e_0, e_2, e_3, \cdots, e_n\}}$

重なりを持たない辺展開図の数え上げ) 貪欲的な手法 [T. Horiyama and W. Shoji., 2 Step 1. 全域木の個数を数え上げる ZDD を構築する Step 2. 1 の節点に到達する集合を 切頂二十面体 列挙する(ZDD を展開する) #(辺展開図)≈ 3.75垓個 (億 ➡ 兆 ➡ 京 ➡ 垓) Step 3. 各集合に対応する辺展開図が 重なりを持つか確認 辺展開図が莫大にあると 現実的な時間で確認できない $\{e_0, e_2, e_3, \cdots, e_n\}$ 7, 82. EE ...

重なりを持たない辺展開図の数え上げ) 貪欲的な手法 [T. Horiyama and W. Shoji., 2 Step 1. 全域木の個数を数え上げる ZDD を構築する Step 2. 1 の節点に到達する集合を 切頂二十面体 列挙する(ZDD を展開する) #(辺展開図)≈3.75垓個 (億 ➡ 兆 ➡ 京 ➡ 垓) Step 3. 各集合に対応する辺展開図が 重なりを持つか確認 辺展開図が莫大にあると ➤ ZDD における演算体系 現実的な時間で確認できない ポイント **ZDD**の演算を用いて 効率的に数え上げた.

重なりを持つ辺展開図の観察

全域木における辺の集合 $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \cdots, e_{21}\}$

全域木における辺の集合 $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \cdots, e_{21}\}$

全域木における辺の集合 $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \cdots, e_{21}\}$ MOPE C_1 における辺の集合 $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$

全域木における辺の集合 $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \dots, e_{21}\}$ MOPE C_1 における辺の集合 $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$ $\triangleright E_{C_1} \subset E_T \rightarrow$ 辺展開図は必ず重なりを持つ $\triangleright E_{C_1} \not \in E_T \rightarrow$ 辺展開図は MOPE C_1 の構造で重ならない

全域木における辺の集合 $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \cdots, e_{21}\}$ MOPE C_1 における辺の集合 $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$ $\triangleright E_{C_1} \subset E_T \rightarrow$ 辺展開図は必ず重なりを持つ $\triangleright E_{C_1} \not \in E_T \rightarrow$ 辺展開図は MOPE C_1 の構造で重ならない

全域木における辺の集合 $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, a, \dots, x\}$ MOPE C_1 における辺の集合 $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$ $\triangleright E_{C_1} \subset E_T \rightarrow$ 辺展開図は必ず重なりを持つ $\triangleright E_{C_1} \not \in E_T \rightarrow$ 辺展開図は MOPE C_1 の構造で重ならない

全域木における辺の集合 $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, a, \dots, y\}$ MOPE C_1 における辺の集合 $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$ $\triangleright E_{C_1} \subset E_T \rightarrow$ 辺展開図は必ず重なりを持つ $\triangleright E_{C_1} \not \in E_T \rightarrow$ 辺展開図は MOPE C_1 の構造で重ならない

全域木における辺の集合 $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, b, \dots, y\}$ MOPE C_1 における辺の集合 $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$ $\triangleright E_{C_1} \subset E_T \rightarrow$ 辺展開図は必ず重なりを持つ $\triangleright E_{C_1} \not \in E_T \rightarrow$ 辺展開図は MOPE C_1 の構造で重ならない

全域木における辺の集合 $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \cdots, e_{21}\}$ MOPE C_1 における辺の集合 $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$ $\geq E_{C_1} \subset E_T \Rightarrow 辺展開図は必ず重なりを持つ$

 $\succ E_{C_1} \not \in E_T \Rightarrow$ 辺展開図は MOPE C_1 の構造で重ならない

サブセッティング法 [H. Iwashita et al., 2013]

ZDD *Z* から制約 *C* を満たす集合族を抽出することによって 新しい ZDD *Z*_N を生成する ZDD の演算.

▶ 多面体 Q における MOPE C_k は 回転展開 [T. Shiota et al., 2023] を 使うことで列挙できる ℓ: Q における MOPE の個数

20

▶ 多面体 Q における MOPE C_k は 回転展開 [T. Shiota et al., 2023] を 使うことで列挙できる ℓ: Q における MOPE の個数

▶ サブセッティング法を MOPE C_k (1 ≤ k ≤ ℓ) に適用

MOPE $C_1 \sim C_\ell$ の構造で 重ならない辺展開図の

 Z_N

集合族を表す ZDD

20

▶ 多面体 Q における MOPE C_k は 回転展開 [T. Shiota et al., 2023] を 使うことで列挙できる ℓ: Q における MOPE の個数

20

▶ サブセッティング法を MOPE C_k (1 ≤ k ≤ ℓ) に適用

- ▶ 整面凸多面体における重なりを持たない辺展開図を 効率よく数え上げるアルゴリズムを考案
 - ✓ 全域木を表す ZDD

✓ MOPE C_k における辺の集合 E_{Ck}の要素を全て同時に含む 集合を除外した集合族を表す ZDD

今後の課題

▶ 整面凸多面体における重なりを持たない辺展開図を 効率よく数え上げるアルゴリズムを考案

✓ 全域木を表す ZDD

✓ MOPE C_k における辺の集合 E_{Ck}の要素を全て同時に含む 集合を除外した集合族を表す ZDD

辺展開することそのものが難しいと される凸多面体に対して,重なりを持 たない辺展開図を数え上げていく.

[W. Schlickenrieder, 1997]

100

重なりを持たない割合が減少する原因 🤞

アルキメデスのn角柱における MOPE

アルキメデスのn角柱における MOPE

アルキメデスのn角柱における MOPE

アルキメデスの [m] 反角柱

重なりを持たない割合が減少する原因 🍐

アルキメデスの m 角柱における MOPE

アルキメデスの m 角柱における MOPE

Dürerの問題 [E. D. Demaine and J. O'Rourke, 2007]

- 全ての凸多面体は、重ならない多角形に辺展開できるか?
- ✓ 計算幾何学における重要な未解決問題
- ✓ 起源は約500年前まで遡る

Dürerの問題の解決には…

計測法教本

- ▶ 重なりを持たない辺展開図が存在しない凸多面体を示す
- ▶ どのような凸多面体に対しても使うことができる, 重なりを持たないように辺展開するアルゴリズムを示す

[C. A. Schevon, 1989]

凸多面体において頂点数が多くなると,重なりを持たない 辺展開図の割合は小さくなる<u></u>

ランダムに選択した 1,000 個の辺展開図に対する実験結果

[C. A. Schevon, 1989]

凸多面体において頂点数が多くなると、重なりを持たない 辺展開図の割合は小さくなる。

ランダムに選択した 1,000 個の辺展開図に対する実験結果

ランダムに選択した 1,000 個の辺展開図に対する実験結果

