
A Characterization of the Overlap-free Polyhedra

Tonan Kamata, Takumi Shiota, Ryuhei Uehara

Abstract: For a polyhedron Q, a polygon obtained by cutting the edges or faces
of Q is called a general unfolding. A general unfolding may have a self-overlap
or self-intersection on the boundary which depends on the way of unfolding. It is
established by [Aronov and O’Rourke] and [Sharir and Schorr] that any convex
polyhedron satisfies the property that at least one general unfolding has no over-
lap. This research focuses on a dual property in which any general unfolding has
no overlap, called overlap-free. We show that a polyhedron is overlap-free if and
only if it is a stamper, which is a notion introduced by Akiyama. This means that if
a polyhedron is not a stamper, at least one general unfolding has an overlap. We
prove it in a constructive way.

1 Introduction
The unfolding of polyhedra has been used for a long time as a method to represent
the surface structure of polyhedra. Its origin is said to be in the work “Underwey-
sung der messung mit dem zirckel un richt scheyt” by the 15th-century painter A.
Dürer. In this work, Dürer represented polyhedra using diagrams that arranged
each face according to their adjacency relationships. The diagrams used by Dürer
can be considered as polygons obtained by cutting and unfolding the surface of
the polyhedra along the edges, which are now referred to as edge unfoldings. The
edge unfoldings of polyhedra can, depending on how they are cut, result in faces
touching or overlapping each other (Figure 1).

Figure 1: According to [Namiki and Fukuda 93], polyhedra whose edge unfoldings
have overlaps

However, in Dürer’s work, all polyhedra are represented with edge unfoldings
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that do not overlap. Focusing on this point, the 20th-century mathematician Shep-
hard proposed the following conjecture [Shephard 75]:

Conjecture 0.1. Every convex polyhedron has an edge unfolding that does not
overlap.

This conjecture remains unsolved to this day and is being studied from various
perspectives. One approach involves considering general unfoldings that allow cuts
in places other than the edges during the unfolding process. With this extended
method of unfolding, the following theorem holds:

Theorem 1. Every convex polyhedron has a non-overlapping general unfolding.

This theorem is proven by constructing a method of general unfolding that guar-
antees no overlaps. Specific methods of unfolding include the source unfolding by
Sharir and Schorr [Sharir and Schorr 86] and the star unfolding by Aronov and
O’Rourke [Aronov and O’Rourke 92].

While the above result concerns the existence of non-overlapping unfoldings,
it is also possible to consider propositions about universality, namely, the property
that “all general unfoldings do not overlap.” When a polyhedron satisfies this prop-
erty, it is defined as Overlap-free. This study provides a complete characterization
for the class of polyhedra that are Overlap-free. Specifically, it uses a property
called Stamper to show that this property is a necessary and sufficient condition for
being Overlap-free. Stamper, as will be discussed later, is a concept proposed by
Akiyama et al. to capture the tiling possibility of an unfolding diagram. Akiyama
et al. provide a specific classification of polyhedra that are Stampers. Using this, it
was possible to obtain a complete classification of Overlap-free polyhedra.

2 Preliminaries
2.1 Basic Definitions
When the boundary of a bounded convex subset in R3 is composed of a finite
number of polygons, this boundary is called a convex polyhedron, and the polygons
composing the boundary are referred to as faces. In this study, convex polyhedra
with a volume of 0, that is, shapes that only have two congruent polygons as their
faces, are also included in the definition of polyhedra. Such polyhedra are called
doubly covered polygons.

An unfolding of a polyhedron Q is a connected and flat polygon obtained by
cutting open the surface of Q. The set of vertices of a polyhedron is denoted by
V (Q). For a vertex v ∈ V (Q), let σ(v) be the total sum of the internal angles at
each face meeting at vertex v, which is referred to as the co-curvature. Regarding
the value of σ(v), the following theorem, known as Descartes’ theorem, holds:

Lemma 1.1. For any convex polyhedron Q,

∑
v∈V (Q)

(2π −σ(v)) = 4π.
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2.2 The Stamper Property of Polyhedra
This section discusses the property known as Stamper on polyhedra, including its
definition and characterization. The Stamper property was defined by Akiyama
et al. in [Akiyama and Matsunaga 18, Akiyama and Matsunaga 20, Akiyama and
Nakamura 00]. For proofs of lemmas and specific examples, refer to the respec-
tive publications. In this paper, we use the following definition based on [Kamata
et al. 22]. For a polyhedron Q, we consider a sequence s = ( f1,e1, f2,e2, . . . , fk)
which line up faces fi and edges ei alternately. Here, we assume that neighboring
two faces fi and fi+1 are distinct faces sharing an edge ei. We use the terminology
“stamp Q along s” for the following operation in R3:

• As the initial position, place Q on the xy plane such that f1 becomes the bottom
face.

• Rotate Q around the edge shared by fi and fi+1, from a state where the bottom
face is fi, so that fi+1 becomes the new bottom face. Repeat this operation for all
elements of s.

Here, let ∂ (Q) be the set of points on the surface of Q. When polyhedron Q is
stamped along s, let As ⊂R2 be the set of points that are included in the bottom face
of Q at least once. Stamping generally derives a many-to-many correspondence
between As and ∂ (Q).

Here, we introduce the following notation:

Definition 1.1. A polyhedron Q is said to be a stamper if, for any sequence s, the
correspondence derived from stamping become a mapping from As to ∂ (Q). In
other words, each point on As uniquely corresponds to a single point in ∂ (Q).

For example, we consider stamping a cube in the order of A,C,D,E,A,C,D
after labeling each face with A to F as shown in Figure 2. In this case, a single
point on As corresponds to different vertices of Q between the first bottom face
A and the last bottom face D. This indicates that the cube is not a stamper. On
the other hand, for a regular tetrahedron, the point corresponding to a single point
on the plane is unique in any stamping path (Figure 3). Therefore, the regular
tetrahedron is a stamper.

A
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 v′ 

 v

Figure 2: Stamping for a cube

For the stamper property, the following characteristics are known:
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Figure 3: Stamping for a regular tetrahedron

Lemma 1.2. For a convex polyhedron Q to be a Stamper, it is equivalent to being
included in one of the following classes:

• Tetramonohedra; tetrahedra whose all faces are congruent
• Doubly covered right isosceles triangles; doubly covered polygons with two con-

gruent right isosceles triangles as faces
• Doubly covered regular triangles; doubly covered polygons with two congruent

regular triangles as faces
• Doubly covered half-regular triangles; doubly covered polygons with two con-

gruent half-regular triangles as faces

Figure 4: Classes of polyhedra that satisfy the stamper property, from left to right:
tetramonohedra, doubly covered right isosceles triangles, doubly covered regular
triangles, doubly covered half regular triangles

3 Results
This paper demonstrates the following theorem:

Theorem 2. For any convex polyhedron Q, Q being a Stamper is a necessary and
sufficient condition for Q to be Overlap-free.

3.1 Proof of Necessity
Lemma 2.1. If Q is a Stamper, then any unfolding of Q does not have overlaps.

This lemma can be derived from the results of [Akiyama and Matsunaga 18,
Akiyama and Matsunaga 20, Akiyama and Nakamura 00], but this paper provides
a separate proof to clarify its relationship with overlap-free properties.
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Proof. Assume that a certain unfolding P of Q has an overlap. Place P on R2 and
take a point p ∈ R2 within the region where P overlaps. At this time, more than
two points on the surface of Q are placed at the location of p. Denote these as
q,q′. Now, consider stamping from the state where the face containing q becomes
the bottom face to the state where the face containing q becomes the bottom face
again. This stamping is uniquely determined [Kamata et al. 22]. In this Stamping,
since p corresponds to two different points q,q′, the derived correspondence is not
a mapping. Therefore, Q is not a Stamper.

3.2 Proof of Sufficiency
Before proving sufficiency, we present the following lemma:

Lemma 2.2. When a polyhedron Q is not a stamper, there exists at least one vertex
v that satisfies one of the following conditions: (A) : π <σ(v), (B) : 2π

3 <σ(v)< π ,
(C) : π

2 < σ(v)< 2π

3 .

Proof. Let n be the number of vertices of the polyhedron Q, and assume that Q is
not a stamper. Note that if the co-curvature of all vertices of Q are composed only
of π, 2π

3 , π

2 , then Q is a stamper.
(CASE 1, when n ≥ 4): From Lemma 1.1, the total sum of co-curvatures is at

least 4π . If all vertices’ co-curvatures were equal to π , Q would be a tetramono-
hedron, so there must be at least one vertex whose co-curvature is greater than π .
Therefore, there must exist at least one vertex that satisfies condition (A).

(CASE 2, when n= 3): Let the three vertices of Q be v,v′,v′′. From Lemma 1.1,
the total sum of co-curvatures is σ(v)+σ(v′)+σ(v′′) = 2π . Assume that none of
the vertices satisfy condition (A). Further, divide the cases based on whether there
exists a vertex with a co-curvature of π .

(CASE 2-1, when one vertex’s co-curvature is π): Without loss of generality,
assume σ(v) = π,σ(v′) < σ(v′′). From Lemma 1.1, σ(v′)+σ(v′′) = π . By the
assumption that Q is not a Stamper, it is not possible for both σ(v′) and σ(v′′) to
be π

2 . Therefore, v′′ satisfies condition (B).
(CASE 2-2, when all co-curvatures are less than or equal to π): Without loss

of generality, assume σ(v) < σ(v′) < σ(v′′). From Lemma 1.1, σ(v)+σ(v′)+
σ(v′′) = 2π . Given the assumption that Q is not a Stamper, it is not possible for
σ(v),σ(v′),σ(v′′) to all be 2π

3 . Since σ(v)+σ(v′)+σ(v′′) = 2π , σ(v′′) must be
truly greater than 2π

3 . Therefore, σ(v′′) satisfies condition (C).

Lemma 2.3. If Q is not a Stamper, then there exists an unfolding of Q that has
overlaps.

Proof. According to Lemma 2.2, a polyhedron must have at least one vertex that
satisfies either condition (A), condition (B), or condition (C), implying that it has a
vertex with co-curvature of at least π/2. Therefore, it suffices to show that for each
condition (A) through (C), it is possible to unfold the neighborhood of a vertex sat-
isfying any of these conditions in such a way that it results in overlaps. Consider a



KAMATA, SHIOTA, UEHARA

vertex v of the polyhedron Q that meets one of these conditions. Take a sufficiently
small circle centered at v on the surface of Q, and cut v out of Q along the edge
of this circle. This produces a sector F obtained by cutting open the cone, which
has no bottom face, along a line from v towards the circumference (Figure 5). By
definition, the central angle of F matches the co-curvature σ(v) at v. Place F on
the xy plane with its center point at the origin and the cut edge of the cone along
the x-axis.

Figure 5: Cutting out of the cone

Case where v satisfies condition A: In this case, a sector F with a central angle
greater than or equal to π and less than 2π is obtained (refer to Figure 6. For the
sake of illustration, a regular decagon is used instead of a cone in the figure).

Figure 6: Sector F obtained from a vertex satisfying condition (A)

Take a circle C with center at the origin O and radius ε , and let the intersection
points with F’s radius be A,A′. Also, place a point B on the y-axis at a distance s
from the origin (Figure 7 left). Cut out triangle OBA from F and glue it such that
OA aligns with OA′ to form shape F ′. The point corresponding to B in the glued
triangle is denoted as X . The coordinates of X can be expressed as (scos(σ(v)+
π

2 ),ssin(σ(v)+ π

2 )). Since OA and OA′ correspond to the same point on the cone,
F ′ also represents a partial unfolding of Q. Next, divide F with a line passing
through the hypotenuse BA′ and glue it similarly on the cone (Figure 7 right). This
process results in a new unfolding F ′′ (Figure 8).
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 A

 B

 A′  X

Figure 7: Design of the cut line

To demonstrate that the unfolding has overlaps, it suffices to show that there
exist values of s,ε such that X lies above the line AB. The equation of line AB can
be expressed as:

y = s
(
−1
ε

x+1
)

The condition for point X to be above this line is:

s · sin
(

σ(v)+
π

2

)
> s
(
−1
ε

(
s · cos

(
σ(v)+

π

2

)
+1
))

This inequality can be transformed, given that both s and ε are positive, to:

ε · sin
(

σ(v)+
π

2

)
>−s · cos

(
σ(v)+

π

2

)
+ ε

s · cos
(

σ(v)+
π

2

)
> ε · sin

(
σ(v)+

π

2

)
+ ε

Further, since π < σ(v)< 2π , it can be transformed to:

s > ε ·
sin
(
σ(v)+ π

2

)
+1

cos
(
σ(v)+ π

2

) (1)

Therefore, for any σ(v) satisfying π < σ(v) < 2π , by choosing s such that point
B fits within F and taking ε sufficiently small, an unfolding with overlaps can be
obtained.
Case where v satisfies condition B: In this case, a sector F with a central angle
greater than or equal to 2π

3 and less than π is obtained (Figure 9).
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Figure 8: Transformed unfolding F ′′

Figure 9: Sector F obtained from a vertex satisfying condition (B)

Here, take a circle C1 with radius ε and a circle C2 with radius 2ε , both centered
at the origin O. Let the intersection points of each Ci with the radius of F be Ai,A′

i.
Additionally, draw a line l1 that passes through the origin and makes an angle of
2π

3 with the x-axis, and place a point B1 on l1 at a distance s from O. Then, draw a
line parallel to l1 passing through A′

1 as l2, and a line parallel to line A1B1 passing
through A2 as l3, with their intersection point denoted as D (Figure 10 left).

Next, cut out triangle OB1A1 from F and glue it such that OA1 aligns with
OA′

1, and then cut F along two line segments A′
1D and DA2, gluing them so that

A1A2 aligns with A′
1A′

2 (Figure 10 right). At this point, denote the point corre-
sponding to B1 in the glued triangle OB1A1 as X . The coordinates of X become(
scos

(
2σ(v)+ π

3

)
,ssin

(
2σ(v)+ π

3

))
.

This results in a partial unfolding of Q, F ′, similar to the case with condition A
(Figure 11).

To demonstrate that the unfolding has overlaps, it suffices to show that there
exist values of s,ε such that X lies above the line A2D. At this point, the equation
of line A2D can be expressed as:

y =
s
√

3
s+2ε

(−x+2ε)
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Figure 10: Design of the cut line

The condition for point X to be above this line is expressed as:

s · sin
(

2σ(v)+
π

3

)
>

s
√

3
s+2ε

(
−s · cos

(
2σ(v)+

π

3

)
+2ε

)
Given that both s and ε are positive, this inequality can be transformed as follows:

(s+2ε)sin
(

2σ(v)+
π

3

)
>
√

3
(
−s · cos

(
2σ(v)+

π

3

)
+2ε

)
Further, by rearranging in terms of s, the equation can be transformed as follows.

s ·
(

sin
(

2σ(v)+
π

3

)
+
√

3cos
(

2σ(v)+
π

3

))
> 2ε ·

(√
3− sin

(
2σ(v)+

π

3

))
By multiplying the left side by 1

2 and considering it as the sum of the product of
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Figure 11: Transformation of the unfolding diagram

trigonometric functions, the transformation can be made accordingly.

s

(
1
2

sin
(

2σ(v)+
π

3

)
+

√
3

2
cos
(

2σ(v)+
π

3

))
= s
(

cos
π

3
sin
(

2σ(v)+
π

3

)
+ sin

π

3
cos
(

2σ(v)+
π

3

))
= s · sin

(
2σ(v)+

2π

3

)
Therefore, the inequality can be transformed into:

s · sin
(

2σ(v)+
2π

3

)
> ε ·

(√
3− sin

(
2σ(v)+

π

3

))
Given that 2π

3 < σ(v) < π , it follows that sin
(
2σ(v)+ 2π

3

)
> 0, and the equation

can be transformed into:

s > ε

√
3− sin

(
2σ(v)+ π

3

)
sin
(
2σ(v)+ 2π

3

) (2)

Thus, for any σ(v) satisfying 2π

3 < σ(v) < π , by choosing s such that point D
fits within F and taking ε sufficiently small, an unfolding with overlaps can be
obtained.
Case where v satisfies condition C: In this case, a sector F with a central angle
greater than or equal to π

2 and less than 2π

3 is obtained (Figure 12).
Here, take circles C1, C2, and C3 centered at the origin O with radii ε , 2ε , and

3ε , respectively. Let the intersection points of each Ci with the radius of F be Ai,A′
i.

Also, place a point B1 on the y-axis at a distance s from the origin. Furthermore,
draw lines l1 and l2 parallel to the y-axis through A′

1 and A′
2, respectively, and

lines l3 and l4 parallel to line A1B1 through A2 and A3, respectively. Denote their
intersection points as shown in Figure 13 as B1,B2,B3,D1,D2.
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Figure 12: Unfolding method for a vertex satisfying condition (C)

Similar transformations, as mentioned before, result in a partial unfolding of Q,
F ′ (Figure 14). At this point, denote the point corresponding to B1 in the glued tri-
angle OB1A1 as X . The coordinates of X become

(
scos

(
3σ(v)+ π

2

)
,ssin

(
3σ(v)+ π

2

))
.

To demonstrate that the unfolding has overlaps, it suffices to show that there
exist values of s,ε such that X lies above the line A3D2. The equation of line A3D2
can be expressed as:

y = s
(
−1
ε

x+3
)

The condition for point X to be above this line is:

s · cos
(

3σ(v)+
π

2

)
> s
(
−1
ε

(
s · cos

(
3σ(v)+

π

2

))
+3
)

This inequality can be transformed, given that both s and ε are positive, to:

ε · cos
(

3σ(v)+
π

2

)
>−s · cos

(
3σ(v)+

π

2

)
+3ε

s · cos
(

3σ(v)+
π

2

)
>−ε · cos

(
3σ(v)+

π

2

)
+3ε

Given that π

2 < σ(v)< 2π

3 , the equation can be transformed to:

s >−ε
cos
(
3σ(v)+ π

2

)
+3

cos
(
3σ(v)+ π

2

) (3)

Therefore, for any σ(v) satisfying π

2 < σ(v) < 2π

3 , by choosing s such that point
D2 fits within F and taking ε sufficiently small, an unfolding with overlaps can be
obtained.

4 Conclusion
In this study, we defined the concept of overlap-free and provided its characteri-
zation. The concept can be extended to what is called edge-overlap-free, meaning
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Figure 13: Design of the cut line

”any edge unfolding does not have overlaps.” For example, it is known that all
five Platonic solids are edge-overlap-free [Horiyama and Shoji 11]. The problem
of characterizing polyhedra that are edge-overlap-free remains an intriguing open
question.
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