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Can any convex polyhedra be unfolded 
along edges without overlaps?

Open Problem [Shephard, 1975]
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Any convex polyhedron has  
a non-overlapping general unfolding.

Theorem [Sharir & Schorr, 1986]
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What types of polyhedra have the property  
“any general unfolding is non-overlapping”? 

(= Overlap-free) 

？
General Unfolding

A Non-overlapping Unfolding

Any convex polyhedron satisfies the property  
“there exists a non-overlapping general unfolding”

A Non-overlapping Unfolding
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Descartes' Theorem
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