A Characterization of the Overlap-free Polyhedra

<u>Tonan Kamata</u> (JAIST) Takumi Shiota (Kyutech) Ryuhei Uehara (JAIST)

The 8th International Meeting on Origami in Science, Mathematics and Education

A Characterization of the Overlap-free Polyhedra

<u>Tonan Kamata</u> (JAIST) Takumi Shiota (Kyutech) Ryuhei Uehara (JAIST)

The 8th International Meeting on Origami in Science, Mathematics and Education

•• * An example from [T. Shiota and T. Saitoh, WALCOM 2023]

* An example from [T. Shiota and T. Saitoh, WALCOM 2023]

...* An example from [T. Shiota and T. Saitoh, WALCOM 2023]

•• * An example from [T. Shiota and T. Saitoh, WALCOM 2023]

Open Problem [Shephard, 1975]

Can any convex polyhedra be unfolded along edges without overlaps?

 \dots * An example from [T. Shiota and T. Saitoh, WALCOM 2023]

* An example from [T. Shiota and T. Saitoh, WALCOM 2023]

Edge Unfolding

Backgrounds

General Unfolding

Open Problem [Shephard, 1975]

Can any convex polyhedra be unfolded along edges without overlaps?

Theorem [Sharir & Schorr, 1986]

Any convex polyhedron has a non-overlapping general unfolding.

Theorem [Sharir & Schorr, 1986]

Any convex polyhedron has a non-overlapping general unfolding.

Theorem

For any convex polyhedron Q,

Q is overlap-free

Q is either one of

tetramonohedron doubly-covered regular triangle doubly-covered half regular triangle doubly-covered right triangle

Theorem

For any convex polyhedron Q,

Q is overlap-free

Q is either one of

tetramonohedron

doubly-covered regular tri doubly-covered half regular doubly-covered

Theorem

For any convex polyhedron Q,

Q is overlap-free

Q is either one of

tetramonohedron doubly-covered regular triangle doubly-covered half regular triangle doubly-covered right triangle

Theorem

For any convex polyhedron Q,

A in avarlan fran

Q is either one of

Theorem

Theorem

For any convex polyhedron Q, Q is overlap-free $\Leftrightarrow Q$ is "stamper"

Theorem

For any convex polyhedron Q, Q is overlap-free $\Leftrightarrow Q$ is "stamper"

Lemma

For any convex polyhedron Q, Q is overlap-free $\Rightarrow Q$ is "stamper"

Lemma

For any convex polyhedron Q, Q is "stamper" $\Rightarrow Q$ is overlap-free

Theorem

For any convex polyhedron Q, Q is overlap-free $\Leftrightarrow Q$ is "stamper"

Lemma

For any convex polyhedron Q, Q is not "stamper" $\Rightarrow Q$ is not overlap-free

Theorem

For any convex polyhedron Q,

Q is overlap-free $\Leftrightarrow Q$ is "stamper"

LemmaFor any convex polyhedron Q,
Q is not "stamper" $\Rightarrow Q$ is not overlap-freeQ is not "stamper" $\Rightarrow Q$ is not overlap-freeNottetramonohedron
doubly-covered regular triangle
doubly-covered half regular triangle
doubly-covered right triangle

Lemma

Lemma

If a convex polyhedron Q is not stamper, Q has overlapping unfolding.

• Cut out a vertex to create a sector.

Lemma

- Cut out a vertex to create a sector.
- Edit it to create overlaps.

Lemma

- Cut out a vertex to create a sector.
- Edit it to create overlaps.

Lemma

- Cut out a vertex to create a sector.
- Edit it to create overlaps.

Lemma

If a convex polyhedron Q is not stamper, Q has overlapping unfolding.

n : the number of vertices of Q

Lemma

If a convex polyhedron Q is not stamper, Q has overlapping unfolding.

n : the number of vertices of Q

Lemma

If a convex polyhedron Q is not stamper, Q has overlapping unfolding.

Lemma

If a convex polyhedron Q is not Q has o

[Proof] Case of n > 4

Let v_1, v_2, \ldots, v_n be the vertices of Q

- Details -

 v_n

Lemma

If a convex polyhedron Q is not stamper, Q has overlapping unfolding.

[Proof] Case of n > 4

Let $v_1, v_2, ..., v_n$ be the vertices of Q \Rightarrow From Descartes' Thm. $\sum_{v \in V(Q)} \sigma(v) = 2(n-2)\pi v_1 \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_2} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_2} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_2} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_2} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_2} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_2} \xrightarrow[v_2]{v_1} \xrightarrow[v_2]{v_2} \xrightarrow[v_2]$

Lemma

Lemma

If a convex polyhedron Q is not stamper, Q has overlapping unfolding.

 \Rightarrow There is at least one *v* where $\sigma(v) > \pi$

Continue

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

If a convex polyhedron Q is not stamper, Q has overlapping unfolding.

Lemma

Lemma

Lemma

Lemma

If a convex polyhedron Q is not stamper, Q has overlapping unfolding.

 \boldsymbol{n} : the number of vertices of \boldsymbol{Q}

Lemma

Theorem

For any convex polyhedron Q,

Q is overlap-free

Q is either one of

tetramonohedron doubly-covered regular triangle doubly-covered half regular triangle doubly-covered right triangle

Theorem

For any convex polyhedron Q, Q is overlap-free $\Leftrightarrow Q$ is "stamper"

[Future Work]

By extending the "Overlap-free",

we can consider a concept of

"Any edge unfolding has no overlaps"

(= Edge-overlap-free)

Theorem

For any convex polyhedron Q, Q is overlap-free $\Leftrightarrow Q$ is "stamper"

[Future Work]

By extending the "Overlap-free",

we can consider a concept of

"Any edge unfolding has no overlaps"

(= Edge-overlap-free)

What kinds of polyhedra are edge-overlap-free?

Theorem

For any convex polyhedron Q, Q is overlap-free $\Leftrightarrow Q$ is "stamper"

[Future Work]

By extending the "Overlap-free",

we can consider a concept of

"Any edge unfolding has no overlaps"

(= Edge-overlap-free)

What kinds of polyhedra are edge-overlap-free?