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Can any convex polyhedra be unfolded 
along edges without overlaps?

Open Problem [Shephard, 1975]
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Any convex polyhedron has  
a non-overlapping general unfolding.

Theorem [Sharir & Schorr, 1986]
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What types of polyhedra have the property  
“any general unfolding is non-overlapping”? 

(= Overlap-free) 

？
General Unfolding

A Non-overlapping Unfolding

Any convex polyhedron satisfies the property  
“there exists a non-overlapping general unfolding”

A Non-overlapping Unfolding
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￼  is either 
 one of
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Theorem

￼  is overlap-free ￼  ￼  is “stamper”Q ⇔ Q
For any convex polyhedron ￼ , Q

Lemma
For any convex polyhedron ￼ , Q

Result

There exists  
overlap unfolding

tetramonohedron 
doubly-covered regular triangle  

doubly-covered half regular triangle 
doubly-covered right triangle

Not
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Proof of Necessities

v
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Proof of Necessities

v  
For a convex polyhedron ￼  with ￼  vertices, 

￼

Q n

∑
v∈V(Q)

σ(v) = 2(n − 2)π

Descartes' Theorem
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￼n = 4 ￼n > 4

All Convex Polyhedra
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Lemma
If a convex polyhedron ￼  is not stamper, 
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Q
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￼σ(vi)￼v1

￼0 ￼2π

￼v2

￼vn

￼π

v
σ(v)

Proof of Necessities - Details -

Let ￼  be the vertices of ￼v1, v2, …, vn Q

 Case of ￼n > 4[Proof]
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￼s
￼ϵ

By fixing ￼  and making ￼ ,  
it can be realized.

s ϵ → 0
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For any ￼ , 
￼

vi
σ(vi) = π

For at least one ￼ , 
￼
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π < σ(vi)

The average of ￼  is ￼σ(vi) π

From Descartes’ Theorem,
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Stamper

For at least one ￼  

￼

vi
π
2

< σ(v) <
2π
3

From Descartes’ Theorem, 
￼σ(v1) + σ(v2) + σ(v3) = 2π
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