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Open Problem [Shephard, 1975]

Can any convex polyhedra be unfolded
along edges without overlaps?
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Any convex polyhedron satisfies the property
“there exists a non-overlapping general unfolding”
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What types of polyhedra have the property A Non-overlapping Unfolding

“any general unfolding is non-overlapping”?
(= Overlap-free)
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Result

For any convex polyhedron O,
() is overlap-free & ( is “stamper”

For any convex polyhedron O,
Q is not “stamper” = () is not overlap-free

/\ 1 /\
tetramonohedron ,
doubly-covered regular triangle There exists
Not . .
doubly-covered half regular triangle overlap unfolding
doubly-covered right triangle ‘
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Proof of Necessities - Strategy -

If a convex polyhedron Q) is not stamper,
() has overlapping unfolding.

 Cut out a vertex to create a sector.

« Edit it to create overlaps.

o(V): co-curvature at v

Sl
Descartes’ Theorem
V\ For a convex polyhedron O with n vertices,
Y o) =2(n-r
veV(0)
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If a convex polyhedron Q) is not stamper,
() has overlapping unfolding.

n : the number of vertices of O

n=3 n=4 n>4
O D.C. Right Triangle O Tetramonohedron

O D.C. Half Regular Triangle

O D.C. Regular Triangle Not Stamper
Not Stamper
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If a convex polyhedron Q) is not stamper,
() has overlapping unfolding.

n : the number of vertices of O

n>4
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If a convex polyhedron Q) is not stamper,
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[Proof] caseofn > 4
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v

. ke /




Proof of Necessities - Details -

If a convex polyhedron Q) is not stamper,
() has overlapping unfolding.

[Proof] case of n > 4 2n — )z
Let v, V,, ..., v, be the vertices of 0 4
AR S NP
= From Descartes’ Thm. Z o(v) =2(n— 27y, : \ > OV
veV(Q) v, - 201 — D)
- 2m—-2)r . i /
= The average of 6(v,) is > T n :

n



Proof of Necessities - Details -

If a convex polyhedron Q) is not stamper,
() has overlapping unfolding.

[Proof] case ofn > 4 2 — D
Let v(, v, ..., v, be the vertices of ( L
o)
= From Descartes’ Thm. Z o(v) = 2(n — 2)my, 5 \ > o(V;
veV(Q) (Vz . ) 2(n - 2)n
 2n—=2)xm R ny
= The average of 6(;) is > 7 n :
n

= There is at least one v where c(v) > 7

Continue
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Condition for Overlap:
sin (a(v) +- %) + 1
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Proof of Necessities - Details -

If a convex polyhedron Q) is not stamper,
() has overlapping unfolding.

[Proof] i1fn > 4, there is a vertex v which satisfies o(v) > 7

Condition for Overlap:
sin (a(v) +- %) + 1

s> €

coS <0(v) +- %)

S By fixing s and making € — O,
it can be realized.
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If a convex polyhedron Q) is not stamper,
() has overlapping unfolding.

n . the number of vertices of O
n=23

(O b.c. Right Triangle

O D.C. Half Regular Triangle
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Proof of Necessities - Details -

If a convex polyhedron Q) is not stamper,
() has overlapping unfolding.

[Proof] Case of n = 3 -oeemeeemeemseeene S :
3 :From Descartes’ Theorem, Stamper
n= o(v)) + 6(1,) + o(v3) = 27;
(Obc.RightTriangle | 7T
O D.C. Half Regular Triangle
O D.C. Regular Triangle pTTTTTmTToTmmmomseoes § PTTTTTTITT T e e mee e eeeaa- .
. For at least one V; . For at least one U For at least one v, '
2 2
A SEED z <o)< ?ﬂ = <o(v)<mrm T < o(v)

Reduced to case of n > 4
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T
Case that there is a vertex v, which satisfies 3 <o(v)<nm
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[Future Work]

By extending the "Overlap-free”,

we can consider a concept of

“Any edge unfolding has no overlaps”

(= Edge-overlap-free)

* What kinds of polyhedra are edge-overlap-free? -
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