
Divide-and-conquer Algorithms for Counting Paths using

Zero-suppressed Binary Decision Diagrams

Keita Maeda∗‡ Takumi Iwasaki∗ Yuta Fujioka∗ Takumi Shiota∗†‡

Toshiki Saitoh∗‡

Abstract

In this study, we discuss algorithms for counting the number of s-t paths with length ℓ within an
undirected graph G, where s is the starting point and t is the terminal point. Our algorithms are based on
the divide-and-conquer. We calculate the number of s-t paths passing through a vertex v, which is neither
s nor t, by multiplying the number of paths from s to v by the number of paths from v to t. As a point
to note, the two paths from s to v and v to t have no common vertices to compute the number of s-t
paths. Zero-suppressed Binary Decision Diagrams (ZDDs) are data structures that compactly represent a
family of sets, and we can use many efficient family algebraic operations on ZDDs. Also, we can represent a
multiset of sets by extending ZDDs. In this study, we propose a new operation for multisets of sets in ZDDs
called Disjoint Join. Using this operation, we present a path-counting algorithms based on the divide-and-
conquer and implement the algorithms using three types of divisions. We show their performance through
our computational experiments.

1 Introduction

Finding the optimal route from the starting point to the destination is a widely needed task in logistics planning,
shuttle services, and car navigation systems. In situations like traffic jams or road closures, offering alternative
routes that suit the current conditions is helpful. The route from a specific starting point to a target destination
can be seen as counting all paths in a graph G. However, in general, the number of paths in a graph is extremely
large, and it is known that computing these paths is a #P-complete [13]. Therefore, it is essential to develop
methods that efficiently count the number of paths.

Many studies have been undertaken to enumerate the solutions for such large-scale problems. One approach
is to use a data structure called Zero-suppressed Binary Decision Diagrams (ZDDs), which represent a family
of sets compactly [9]. ZDDs also support family algebraic operations, enabling efficient calculations. These
operations allow counting the number of sets, extracting optimal sets, and generating random sets. Moreover,
it is known that we can represent multisets of sets by extending ZDDs [10]. ZDDs are used for various social
applications, such as enumerating specific structures on grid graphs1, network design [11], and region partitioning
for evacuation planning [12].

The method used to solve these problems is called the frontier-based method, a top-down approach to
constructing ZDDs. It is known that the size of the ZDD constructed using the frontier-based method can sig-
nificantly change depending on the order in which elements in the set are selected [7]. The path decomposition
of the input graph G is computed to determine the optimal order of elements for a more compressed ZDD. How-
ever, computing the optimal path decomposition of graph G is known to be NP-hard [1], and heuristic methods
such as Breadth-First Search (BFS) and beam search have been used to find “good” path decompositions [5].
Moreover, a suitable path decomposition may not exist for some input graphs; the frontier-based method is
unsuitable in such cases.

In this study, we present simple algorithms based on the divide-and-conquer. When considering a vertex v
which is not s or t, the number of paths from s to t passing through v is determined by multiplying the number
of paths from s to v by the number of paths from v to t. It is important to note that, except for v, the two paths
from s to v and from v to t do not have no common vertices. To efficiently perform operations that unite two sets
without shared vertices, this study employs ZDDs. These ZDDs represent multisets of sets with weights that
show the number of paths in each set. Operations on these multisets of sets are carried out using an algebraic
system specifically designed for these calculations. Additionally, our algorithms can adjust the operations in the
ZDDs based on the lengths of the two divided paths. This paper proposes a new “Disjoint Join” operation for
multisets of sets. We also suggest methods for implementing path-counting algorithms using ZDDs with three

∗Kyushu Institute of Technology
†Research Fellow of Japan Society for the Promotion of Science
‡Corresponding author ({maeda.keita600, shiota.takumi779}@mail.kyutech.jp, toshikis@ai.kyutech.ac.jp)
1You can watch a path-counting animation on YouTube. (https://youtu.be/Q4gTV4r0zRs)

1

different types of divisions, including this new operation. Furthermore, we implemented these three presented
algorithms and conducted computational experiments to compare their efficiency with algorithms based on the
frontier-based method.

2 Preliminaries

2.1 Graph

Let G = (V,E) be an undirected graph, where V is a set of vertices and E = {{u, v} | u, v ∈ V, u ̸= v} is a set
of edges. A sequence of vertices {(v1, . . . , vℓ) | vi ̸= vi+1 and {vi, vi+1} ∈ E for i ∈ {1, . . . , ℓ− 1}} is a path, and
v1 and vℓ are called the endpoints of the path. A path P is a Hamiltonian path if a path includes every vertex
in G. A vertex vj is adjacent to vertex vi if two vertices vi, vj ∈ V are connected by an edge {vi, vj} ∈ E. The
set of vertices adjacent to vertex vi is called the adjacency set and is denoted by N(vi) = {vj | {vi, vj} ∈ E}.
For a subset of vertices W ⊆ V in the graph G, the graph G[W] = (W, {{p, q} | p, q ∈ W and {p, q} ∈ E}) is
called the subgraph induced by W .

2.2 Multiset of sets

Let’s consider a set A = {a0, a1, . . . , an−1} where n ∈ N. The set 2A = {∅, a0, a1, . . . , {a0, a1, . . . , an−1}} is
called the power set of A. Each item in A is called an element of A, and each subset of 2A is called a family of
sets in A. Within a family of sets, if the same set is allowed to appear more than once, it is called a multiset
of sets F . The number of each element C in F is called its weight, and every weight is a non-negative integer.
So, if F includes C with weight w, we denote it by wC ∈ F . If the weight of C in F is zero, it means that C is
not included in F , so we denote it by C /∈ F or 0C ∈ F .

Here, we consider a multiset of sets F , comprising m sets, with each set having a weight greater than zero.
These sets are denoted as Ci (where Ci ̸= Cj for 1 ≤ i ̸= j ≤ m), and the weight of set Ci is wi. Then, F can
be written as follows:

F = {w1C1, w2C2, . . . , wmCm} .

The union operation for the multisets of sets F and G can be defined as follows:

F ∪ G = {(wf + wg)C | wfC ∈ F , wgC ∈ G}.

Furthermore, if the set Λ = {1, 2, . . . , λ} is given, the union operation of all multisets of sets {F1,F2, . . . ,Fλ}
indexed by Λ can be written as follows: ⋃

i∈Λ

Fi = F1 ∪ F2 ∪ · · · ∪ Fλ.

Additionally, the operations of difference (\), Cartesian product (▷◁), and quotient (/) for the multisets of sets
F and G can be defined as follows:

F \ G = {max(wf − wg, 0)C | wfC ∈ F , wgC ∈ G}

F ▷◁ G =
{∑

(wfwg)(CF ∪ CG) | wfCF ∈ F , wgCG ∈ G
}

F/G =

{
min

(⌊
wf

wg

⌋)
(CF \ CG) | wfCF ∈ F , wgCG ∈ G

}

2.3 Zero-Suppressed Decision Diagrams

A Zero-Suppressed Decision Diagram (ZDD) is a data structure representing a family of sets compactly as a
directed acyclic graph. A ZDD has two types of nodes, called branching nodes, labeled with elements from the
set A, and terminal nodes labeled with 0 or 1. Herein, the elements of set A are ordered, and labels are assigned
sequentially from the root node, the top node of the ZDD. Each branching node v, except for the terminal
nodes, has two directed edges: the 0-branch and the 1-branch. A path from the root node to a terminal node
corresponds to a set C in A, and an element x is included in C if and only if the path reaches the node v labeled
with x and then proceeds from v along the 1-branch. Furthermore, a path from the root node to a terminal
node labeled with 1 corresponds to a set represented by the ZDD.

Let v0 be the node in a ZDD pointed to by the 0-branch of node v, and let v1 be the node pointed to by
the 1-branch. Applying the following two reduction rules, we can obtain an irreducible ZDD, which cannot be
reduced any further [9].

2

(a) Node sharing (b) Node deletion

Figure 1: ZDDs reduction rules Figure 2: Representing a multiset of sets with
ZDDs

Node sharing If two nodes v and v′ have the same labels, with identical v0 and v′0, as well as v1 and v′1, these
nodes are shared (Figure 1a).

Node deletion If node v points to a terminal node labeled 0 through v1, remove v and redirect all directed
edges pointing to v to point to v0 instead (Figure 1b).

ZDDs support operations such as union (P ∪Q) and intersection (P ∩Q) between two ZDDs, P and Q, as
well as operations on P , such as counting the number of elements [9]. It is also known that the ZDDs resulting
from applying these operations to irreducible ZDDs remain irreducible [8].

The multiset of sets F can be represented as an array of ZDDs Z. The size of Z is k, and their indices
are labeled from 0 to k − 1. Each element in Z is a ZDD, and all of them represent a family of sets in
A = {a0, a1, . . . , an−1}. Here, we describe the method for representing a set C with weight w within the
multiset of sets F . Assume that the weight w is represented as a binary bit string, w = bk−1bk−2 . . . b0. This

representation means that w =
∑k−1

i=0 2ibi, where each bi is either 0 or 1. By defining the array Z in this way, we
can reconstruct the weight w of C by the indices of ZDDs in the array that contains C. Since Z can represent
all elements wC of the multiset of sets F , it represents the multiset of sets F .

2.4 Path decomposition

When a graph G = (V,E) is given, and a sequence of subsets of V , P = {X1, X2, . . . , Xr} (Xi ⊆ V, i ∈
{1, 2, . . . , r}), satisfies the following conditions, we call P a path decomposition of graph G [2].

Condition 1
⋃r

i=1 Xi = V .

Condition 2 ∀(u, v) ∈ E,∃i ∈ {1, 2, . . . , r}, u ∈ Xi and v ∈ Xi.

Condition 3 If v ∈ Xi ∩Xk(i ≤ k), then ∀j ∈ {i, . . . , k}, v ∈ Xj .

The subsets of vertices within a path decomposition P are called bags. The size of the bag is the number of
elements in a bag Xi minus one. The width of the path decomposition P is the size of the largest bag among
all the bags in P. A path decomposition of graph G is not unique, and each decomposition has a certain
width. The minimum width among all possible path decompositions of G is called the pathwidth of G. A path
decomposition of G that satisfies the following conditions is called a nice path decomposition.

Condition 1 X1 = Xn = ∅

Condition 2 i ∈ {1, 2, . . . , r − 1},∃v ∈ V,Xi+1 = Xi ∪ {v} or Xi+1 = Xi \ {v}

It is known that a non-reduced ZDD created using the frontier-based method is equivalent to the DP table of a
path decomposition [5]. Therefore, constructing a ZDD with elements ordered according to a path decomposition
of minimal width enhances efficiency and speeds up processing using the frontier-based method.

3 Algorithms

The problem considered in this study is as follows:

Path-counting problem :

Input: A graph G = (V,E), two terminals (s, t) ∈ V , and an integer ℓ.

Question: What is the number of s-t paths of length ℓ in G ?

3

(a) (⌈ ℓ
2
⌉, ⌊ ℓ

2
⌋)-path-counting algorithm (b) (ℓ− 1, 1)-path-counting algorithm

Figure 3: Illustrations of path dividing in the (ℓ− k, k)-path-counting algorithms

In this section, we present three algorithms using ZDDs to count the number of paths based on the divide-
and-conquer. Specifically, we divide a path of length ℓ into two paths of lengths ℓ− k and k, using the divide-
and-conquer to count the paths. From now on, we call this method the (ℓ − k, k)-path-counting algorithm(
2 ≤ k ≤ ⌈ ℓ2⌉

)
. The first algorithm uses a newly devised operation on ZDDs, called the Disjoint Join operation.

The second algorithm is focused on the number of elements in a set and uses the Cartesian product operation.
The third algorithm is specifically designed for the case when k = 1.

Our algorithms use a multiset of sets F(s, t, ℓ) defined over the vertex set V , represented using ZDDs. Here,
for vertices s and t and integer ℓ, each element wVi in ZDDs F(s, t, ℓ) represents the number of Hamiltonian
paths from s to t within the subgraph G[Vi]. The subgraph G[Vi] is induced by the vertex set Vi with s, t ∈ Vi

and |Vi| = ℓ − 1. Hereafter, we define F(s, t, ℓ) as the ZDDs for paths of length ℓ from s to t. When ℓ > 2,
for a natural number k ∈ {1, . . . , ℓ − 1} and a vertex v in V , we define two ZDDs: F1 = F(s, v, ℓ − k) and
F2 = F(v, t, k). With these definitions, we can write F(s, t, ℓ) as a following recursive function:

F(s, t, ℓ) =
⋃
v∈V

wV ′

∣∣∣ w =
∑

w1V1∈F1,w2V2∈F2,
V1∩(V2\{v})=∅,

V1∪V2=V ′

w1 · w2

(1)

Additionally, if the length ℓ = 1 and {s, t} ∈ E, then F(s, t, ℓ) = {1{s, t}}, and if the length ℓ = 1 and {s, t} /∈ E,
then F(s, t, ℓ) = ∅.

Here, we explain this recursive function assuming ℓ > 1. Any path of length ℓ from s to t can be divided
into a path of length ℓ − k from s to a vertex v and a path of length k from v to t. Assuming we already
have the ZDDs F1 and F2, which represent paths of length ℓ − k from s to v and paths of length k from v to
t, respectively, obtained through recursive function. When V1 and V2 do not overlap except for vertex v, any
Hamiltonian path from s to v in the subgraph G[V1] can be connected with any Hamiltonian path from v to t
in the subgraph G[V2]. Consequently, we can count the total number of s-t paths by multiplying the numbers
of Hamiltonian paths in these subgraphs, w1 · w2. When V1 ∪ V2 = V ′, it does not imply that V ′ is composed
only of V1 and V2. In other words, V ′ might also result from the union of other sets. For example, V ′ could
be formed by the union of V3 and V4, where V3 ̸= V1 and V4 ̸= V2. This means that different combinations
of vertex sets can also constitute V ′. Paths obtained by connecting the Hamiltonian paths of G[V1] and G[V2]
are distinct from those obtained by connecting the Hamiltonian paths of G[V3] and G[V4] because there is no
overlap between them. So, by calculating the sum of the multiplied weights for all divisions of the sets that
make up V ′, we can estimate the total weight. This total represents the number of s-t Hamiltonian paths that
pass through vertex v as the ℓ−kth vertex in the subgraph induced by V ′. Furthermore, we calculate the union
of the ZDDs for s-t paths of length ℓ that passes through vertex v at the ℓ − kth position. This calculation
yields the ZDDs F(s, t, ℓ), representing all length paths ℓ from s to t. Additionally, by summing the weights of
each element in the ZDDs F(s, t, ℓ), we can obtain the total number of s-t paths of length ℓ. The illustration of
this algorithm, with k = ℓ

2 , is shown in Figure 3a.
We can construct a path of length ℓ by connecting two paths and taking the union of the sets representing

each path. There must be no overlap between the two sets in this process except at the connecting vertex v.
Therefore, we devised three path-counting algorithms that consider vertex overlaps.

3.1 Path-counting algorithm using the Disjoint Join operation

Here, efficiently computing the union only for non-overlapping sets, we propose an operation Disjoint Join ⊎
for multisets of sets using ZDDs. The Disjoint Join operation calculates the union of two sets from the ZDDs
F and G, where these sets are non-overlapping. We can obtain the Disjoint Join operation by calculating the
following equation.

F ⊎ G =
{∑

(wfwg) (CF ∪ CG) | wfCF ∈ F , wgCG ∈ G, and CF ∩ CG = ∅
}

4

Algorithm 1 Disjoint Join for multisets of sets

Input: ZDDs F , G
1: if F ={wf∅} and G ={wg∅} then
2: return {wfwg∅}
3: end if
4: if F = ∅ or G = ∅ then
5: return ∅
6: end if
7: i← (F ∪ G).top
8: f0 ← F .offset(i), f1 ← F .onset(i), g0 ← G.offset(i), g1 ← G.onset(i)
9: R ← ((f0 ⊎ g1.delete(i)).append(i)) ∪ ((f1.delete(i) ⊎ g0).append(i)) ∪ (f0 ⊎ g0)

10: return R

Table 1: ZDDs operations

F .offset(v) {wC | wC ∈ F and v /∈ C} = F \ {F/{{v}} ▷◁ {{t}}}
F .onset(v) {wC | wC ∈ F and v ∈ C} = F/{{v}} ▷◁ {{v}}
F .append(v) {w(C ∪ {v}) | wC ∈ F} = F ▷◁ {{v}}
F .delete(v) {w(C \ {v}) | wC ∈ F} = F/{{v}}
F .filter(k) {wC | wC ∈ F and |C| > k}
F .top Return the label number of the element at the root node in F .

The pseudocode for the Disjoint Join operation is shown in Algorithm 1. From now on, we will use functions
available on ZDDs; please refer to Table 1.

In Algorithm 1, lines 1-6 represent the base case, and lines 7-10 represent the recursive step. Here, we will
explain the algorithm’s recursive process.

[Explanation of the recursive step]

(Line 7) We consider the overlaps of elements of sets within F and G. We then focus on the element i,
corresponding to the root node of the ZDD formed from the union of F and G. From now on, we will only
consider the overlaps involving i.

(Line 8) We get all sets from F that do not include element i and store them in f0. Similarly, we get all sets
from F that include element i and store them in f1. We do the same operations for G, generating g0 and
g1.

(Line 9) For element i, we consider three cases where there are no overlaps between F and G: (i) f0 and g1,
(ii) f1 and g0 and (iii) f0 and g0. These pairs of f and g are used as inputs for recursive calls, with
additional consideration of overlaps involving other elements. If i is contained in either f or g (cases (ii)
and (iii)), i would be re-selected in Line 6 during the recursive call. To prevent this, we delete i (operation
for delete(i)) and then re-add i during the recursive step (operation for append(i)).

(Line 10) Return the ZDDs R obtained in line 8.

[Explanation of the base cases]

(Lines 1-2) Continuing recursive calls may result in all elements being deleted through the operation delete(i)
Line 8. In this case, both F and G represent ZDDs that only consist of the empty set, which do not
overlap. Therefore, the function returns the empty set with their multiplied weights, where weights wf

and wg are multiplied.

(Lines 4-5) Continuing recursive calls may lead to a situation where either F or G becomes empty (i.e., no
sets exist) after applying offset(i) or onset(i) Line 8. If ZDDs representing an empty set are input, there
are no combinations to unite; thus, the function returns an empty set.

Thus, combining operations allows the Disjoint Join operation to be implemented on ZDDs. Furthermore,
using the Disjoint Join operation, the recursive function (1) can be written as follows:

F(s, t, ℓ) =
⋃

v∈V \{s,t}

F (s, v, ℓ− k) ⊎ (F (v, t, k) .delete(v))

5

3.2 Path-counting algorithm using Cartesian product operation

We want to obtain F(s, t, ℓ) from ZDDs F(s, v, ℓ − k) and F(v, t, k). The set C in F(s, t, ℓ) must satisfy the
condition |C| = ℓ + 1. Here, the size of sets contained in F(s, v, ℓ − k) is ℓ − k + 1, and those in F(v, t, k) are
k+1. If we want to compute the union of sets from the two ZDDs that do not overlap except at the vertex v, the
size of the set will be ℓ+1. Let’s consider a Cartesian product operation that unites all sets from F(s, v, ℓ− k)
and F(v, t, k). If we remove sets whose number of elements is less than ℓ + 1, we can obtain ZDDs containing
only the union of sets that do not overlap except at vertex v. Thus, using the Cartesian product operation,
recursive function (1) can be written as follows:

F(s, t, ℓ) =
⋃

v∈V \{s,t}

(F(s, v, ℓ− k) ▷◁ F(v, t, k)).filter(ℓ) (2)

3.3 (ℓ− 1, 1)-path-counting algorithm

Here, we describe an algorithm for a specific case where the path is divided into two parts: a path of length
ℓ− 1 and a single edge. Specifically, we connect a path from s to v of length ℓ− 1 with the edge {v, t} to form
a path of length ℓ from s to t. An illustration of this algorithm is shown in Figure 3b. The connecting vertex t
should not be included in the s-v path; for other vertices, no considerations for overlap are necessary. Therefore,
without using complex operations such as Disjoint Join, recursive function (1) can be written as follows:

F(s, t, ℓ) =
⋃

v∈N(t)

(F(s, v, ℓ− 1).offset(t)).append(t)

This recursive function means we first extract sets from the ZDDs of the s-v path of length ℓ − 1 that do not
include vertex t. Then, by adding vertex t to these sets, we can obtain the ZDDs for the s-t path of length ℓ.

4 Experiments

In this section, we show the results of our computational experiments to verify the computational performance
of the path-counting algorithms introduced in Section 3. For this experiment, we used five algorithms created
by combining the approaches devised in Section 3 as follows:

(a) (⌈ ℓ2⌉, ⌊
ℓ
2⌋)-DJ: Use the (⌈ ℓ2⌉, ⌊

ℓ
2⌋) path-counting algorithm, which adopts the Disjoint Join operation for

the uniting process

(b) (⌈ ℓ2⌉, ⌊
ℓ
2⌋)-CP: Use the (⌈ ℓ2⌉, ⌊

ℓ
2⌋) path-counting algorithm, which adopts the Cartesian product operation

for the uniting process

(c) (ℓ− 1, 1): Use the (ℓ− 1, 1) path-counting algorithm

(d) (ℓ− 1, 1) + (⌈ ℓ2⌉, ⌊
ℓ
2⌋)-DJ:

{
Use (ℓ− 1, 1) if the path length is from 1 to ℓ

2

Use (⌈ ℓ2⌉, ⌊
ℓ
2⌋)-DJ otherwise

(e) (ℓ− 1, 1) + (⌈ ℓ2⌉, ⌊
ℓ
2⌋)-CP:

{
Use (ℓ− 1, 1) if the path length is from 1 to ℓ

2

Use (⌈ ℓ2⌉, ⌊
ℓ
2⌋)-CP otherwise

Additionally, to generate ZDDs more efficiently, we have to consider the order of elements. In this study, we
assigned graph vertices based on three different orderings as follows:

(A) Order based on the input file

(B) Order determined by breadth-first search (BFS) starting from point s

(C) Order based on a heuristic path decomposition program [3] and a time limit of 10 seconds

We conducted a total of fifteen experiments ((a)–(e)), combining the five types of algorithms with the three
different orderings ((A)–(C)). For the input, we used 100 instances provided by ICGCA2 consisting of graphs
G(V,E), path endpoints s, t, and a path length ℓ. The composition of the instances includes 15 problems based
on maps and railway information from real-world scenarios and 85 artificially created graphs [4]. For comparing
execution speeds, we employed two representative path-counting methods: the mate-frontier method [7] with
the subsetting method [6]. The approaches are as follows:

2https://afsa.jp/icgca/index.html

6

(a) No. 089. Only solved with the
(⌈ ℓ

2
⌉, ⌊ ℓ

2
⌋)-path-counting algorithm.

(|V | = 631, |E| = 2078, ℓ = 16)

(b) No.085. Only solved with the (ℓ−
1, 1)-path-counting algorithm. (|V | =
754, |E| = 895, ℓ = 61)

(c) No. 025. Only solved with the
frontier-based algorithm. (|V | =
50, |E| = 232, ℓ = 50)

Figure 4: Examples of instances

(f) MF1: First, enumerate s-t paths, then extract paths of length ℓ.

(g) MF2: First, enumerate sets of ℓ edges, then identify sets that form paths.

We run the programs on a Linux CentOS 7.9 machine, an Intel Xeon CPU E5-2643 v4 (3.40 GHz, 24 cores),
and 512GB memory. We set the timeout to 600 seconds per instance. We implement the algorithms using the
C++ language and the libraries SAPPOROBDD3 for (a)–(e) and TdZdd4 for (f) and (g). The results of the
computational experiments for each instance are showed in Appendix A of Table 2

From the results of these experiments, we observe the following: The computational times of the methods (4)
(ℓ−1, 1)+(⌈ ℓ2⌉, ⌊

ℓ
2⌋)-DJ and (5) (ℓ−1, 1)+(⌈ ℓ2⌉, ⌊

ℓ
2⌋)-CP are faster. Additionally, the BFS-based ordering (B) is

somewhat faster than other orderings. Moreover, when comparing the uniting processes using the Disjoint Join
operation and the Cartesian product operation ((1) vs (2) and (4) vs (5)), the former is faster. We speculate
that the Cartesian product operation generates unnecessary sets that need to be removed; the ‘filter(ℓ)’ in
recursive function (2) corresponds to removing these unnecessary sets.

For some instances, such as No.089 (Figure 4a), only methods (a), (b), (d), and (e) including the (⌈ ℓ2⌉, ⌊
ℓ
2⌋)-

path-counting algorithm solvable. These instances have a higher |E|/|V | ratio than others and are densely
connected graphs with large clique-like structures. The (ℓ − 1, 1)-path-counting algorithm does not work in
densely connected graphs. Furthermore, the path width of graphs containing large cliques is larger, and we
cannot solve these instances with frontier-based search.

On the other hand, there are instances where the (ℓ−1, 1) path-counting algorithm is the fastest at counting,
such as No. 006 and No. 009. Specifically, for No. 085 (Figure 4b), only the (ℓ − 1, 1)-path-counting algorithm
can complete the count within 600 seconds.

Instances where the (ℓ− 1, 1)-path-counting algorithm performs quickly tend to have a lower |E|/|V | ratio
than others and are characterized as sparse graphs. These data are presumed to be based on maps and railway
information, and even for large values of ℓ like in No. 085, the (ℓ − 1, 1)-path-counting algorithm can compute
quickly. However, even within sparse graphs, instances with extremely high path widths, such as grid-like graphs
(e.g., No. 005, No. 019), are not calculated.

Furthermore, instances No. 025 (Figure 4c), No. 026, and No. 052 cannot be solved with our presented path-
counting algorithm but can be solved using the frontier-based algorithm. However, for these instances, ℓ is much
larger than for others, and similar instances with this length cannot be solved. We assume the frontier-based
algorithm can solve these three instances because they are small-scale graphs with fewer edges.

5 Conclusion

In this study, we presented (ℓ − k, k)-path-counting algorithms based on the divide-and-conquer using ZDDs
operations, aimed at counting paths of length ℓ from start vertex s to end vertex t in the input graph G. We
developed the following three algorithms:

1. An algorithm using a newly proposed operation called Disjoint Join for a multiset of sets.

3https://github.com/Shin-ichi-Minato/SAPPOROBDD/
4https://github.com/kunisura/TdZdd/

7

2. An algorithm focusing on the number of elements in combinations using Cartesian product operations.

3. An algorithm designed to avoid complex ZDDs operations, applicable only when k = 1.

We implemented these algorithms and conducted computational experiments. The results showed that the
types of graphs solvable by each algorithm varied with the algorithm type and the division method k.

In future work, we will conduct experiments on a more diverse range of input graphs. We still need to clarify
which types of input graphs are best suited for our presented algorithms. For example, we want to conduct
experiments on graphs with various characteristics, such as path length, path width, clique size, and graph
planarity. Additionally, we plan to expand the range of effective graphs for the algorithms. Finally, it remains
important to explore the potential applications of the Disjoint Join operation for a multiset of sets to problems
beyond path-counting.

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant Number JP19K12098.

References

[1] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding embeddings in a
k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[2] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal
Pilipczuk, and Saket Saurabh. Parameterized Algorithms, chapter 7. Springer International Publishing,
2015.

[3] Tomoya Doi. Koritsuteki na furonteia-ho no hensu junjo kettei no tameno pasu-bunkai arugorizumu
(Path Decomposition Algorithm for Determining Variable Order in Efficient Frontier-Based Algorithms),
in Japanese, 2023. Kyushu Institute of Technology master’s thesis. Supervisor : Toshiki Saitoh.

[4] Takeru Inoue, Norihito Yasuda, Hidetomo Nabeshima, Masaaki Nishino, Shuhei Denzumi, and Shin ichi
Minato. International competition on graph counting algorithms 2023, 2023.

[5] Yuma Inoue and Shin-ichi Minato. Acceleration of zdd construction for subgraph enumeration via path-
width optimization. TCS-TR-A-16-80. Hokkaido University, 2016.

[6] Hiroaki Iwashita and Shinichi Minato. Efficient top-down ZDD construction techniques using recursive
specifications. Technical Report TCS-TRA-1369, Graduate School of Information Science and Technology,
Hokkaido University, 2013.

[7] Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin-ichi Minato. Frontier-based search for enumer-
ating all constrained subgraphs with compressed representation. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 100(9):1773–1784, 2017.

[8] Donald E Knuth. The art of computer programming, volume 4A: combinatorial algorithms, part 1. Pearson
Education India, 2011.

[9] Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial problems. In Alfred E.
Dunlop, editor, Proceedings of the 30th Design Automation Conference. Dallas, Texas, USA, June 14-18,
1993, pages 272–277. ACM Press, 1993.

[10] Shin-ichi Minato and Hiroki Arimura. Combinatorial item set analysis based on zero-suppressed bdds.
Technical report, Hokkaido University, TCS Technical Report, 12 2004.

[11] Hirofumi Suzuki, Masakazu Ishihata, and Shin-ichi Minato. Designing survivable networks with zero-
suppressed binary decision diagrams. In WALCOM: Algorithms and Computation, pages 273–285. Springer
International Publishing, 2020.

[12] Atsushi Takizawa, Yasufumi Takechi, Akio Ohta, Naoki Katoh, Takeru Inoue, Takashi Horiyama, Jun
Kawahara, and Shin-ichi Minato. Enumeration of region partitioning for evacuation planning based on zdd.
In 11th International Symposium on Operations Research and its Applications in Engineering, Technology
and Management 2013 (ISORA 2013), pages 1–8, 2013.

[13] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing,
8(3):410–421, 1979.

8

A Additional Tables

Table 2: Result of computational experiments (Timeout is 600 seconds, represented by “-”.)

No. |V | |E| ℓ
Runnning time [s]5

(A) Order based on the input files (B) Order determined by BFS (C) Order based on a heuristic program [3]
(a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

000 100 177 13 0.54 0.57 0.15 0.51 0.55 - 8.48 0.41 0.5 0.19 0.41 0.52 - 161.66 1.8 1.88 1.61 1.75 1.85 - 104.18
001 196 361 20 5.93 6.78 9.56 5.95 6.7 - 165.88 5.76 6.63 4.44 5.89 6.73 - - 16.09 16.98 11.54 16.2 17.26 - -
002 196 361 39 19.1 59.15 - 15.95 20.52 513.11 - 14.85 48.33 - 13.36 17.61 - - 31.95 78.07 - 29.07 33.55 - -
003 169 309 36 97.47 272.54 - 95.14 261.49 134.96 412.57 15.09 49.55 - 14.28 37.1 - - 116.69 407.17 - 115.28 392.7 - -
004 225 417 25 9.34 10.84 306.58 9.3 10.43 - - 9.18 10.57 142.31 9.38 10.48 - - 19.62 20.95 363.27 19.78 21.3 - -
005 256 477 22 18.92 21.23 66.29 18.97 21.2 - - 18.54 21.02 70.11 18.93 21.05 - - 29.02 31.61 96.74 29.25 31.87 - -
006 256 477 19 14.44 16.28 4.68 14.25 16.1 - - 14.01 15.5 2.85 14.19 16.13 - - 24.26 26.2 11.98 24.19 26.7 - -
007 324 609 85 -
008 361 681 72 -
009 225 417 17 6.11 6.98 2.02 6.03 6.83 - 216.69 5.86 6.74 1.19 6.04 6.76 - - 16.07 16.98 11.98 16.3 17.15 - -
010 196 361 52 -
011 169 309 17 2.38 2.83 2.85 1.76 2.06 - - 2.22 2.68 4.31 1.74 2.01 - - 12.49 12.86 13.33 11.93 12.27 - -
012 225 417 56 -
013 324 609 45 120.61 - - 100.25 120.41 - - 83.24 491.33 - 76.90 100.58 - - 102.6 534.04 - 95.01 117.73 - -
014 289 541 64 -
015 361 681 47 198.24 - - 157.99 204.56 - - 126.27 - - 115.38 165.47 - - 149.76 - - 130.98 181.98 - -
016 256 477 75 -
017 196 361 65 -
018 289 541 24 20.44 23.72 264.62 20.91 23.43 - - 20.23 23.02 140.13 20.92 23.31 - - 30.94 33.68 169.38 31.67 34.85 - -
019 289 541 42 406.59 - - 407.91 588.69 - - 69.55 203.22 - 65.97 93.99 - - - - - - - - -
020 72 617 7 0.09 0.11 0.38 0.07 0.09 - 141.39 0.09 0.11 0.37 0.07 0.09 - 141.36 0.09 0.11 0.54 0.07 0.09 - -
021 57 516 8 0.08 0.1 1.88 0.03 0.03 - 558.93 0.08 0.09 1.88 0.03 0.03 - 559.34 0.09 0.1 2.57 0.04 0.04 - -
022 95 862 11 0.7 0.83 36.56 0.48 0.54 - - 0.69 0.83 36.28 0.49 0.53 - - 0.71 0.84 40.32 0.51 0.57 - -
023 57 516 5 0.00 0.00 0.03 0.00 0.00 - 7.21 0.00 0.00 0.03 0.00 0.00 - 7.21 0.00 0.00 0.05 0.00 0.00 - -
024 76 689 9 0.16 0.19 4.64 0.10 0.11 - - 0.16 0.19 4.73 0.10 0.11 - - 0.15 0.18 5.96 0.11 0.12 - -
025 50 232 50 - - - - - 212.25 - - - - - - - - - - - - - - -
026 45 187 45 - - - - - 340.27 - - - - - - - - - - - - - - -
027 65 397 18 15.19 110.39 - 13.12 103.63 39.6 203.7 15.2 110.35 - 13.29 103.32 39.1 203.97 16.67 125.22 - 14.51 116.55 - -
028 65 397 14 1.2 2.45 87.71 0.70 1.51 36 97.88 1.2 2.46 87.67 0.71 1.5 35.59 98.23 1.34 2.73 96.05 0.88 1.89 - -
029 60 425 60 -
030 95 862 14 4.72 8.12 356.61 2.66 5.1 - - 4.85 8.33 354.02 2.85 5.06 - - 5.18 9.49 398.02 3.12 6.09 - -
031 80 607 14 2.56 4.6 174.03 1.39 2.64 - - 2.58 4.6 172.83 1.39 2.64 - - 3.05 5.67 211.18 2 3.86 - -
032 75 532 11 8.18 12 317.69 7.62 11.21 - - 4.28 7.22 307.66 3.80 6.56 - - 6.56 10.76 479.2 5.99 10.04 - -
033 70 462 20 73.51 - - 69.25 - 114.21 542.4 73.17 - - 69.08 - 113.65 536.32 90.04 - - 84.67 - - -
034 72 617 13 -
035 54 462 10 0.31 0.38 7.54 0.16 0.2 - - 0.31 0.37 7.51 0.16 0.2 - - 0.39 0.54 12.1 0.24 0.35 - -
036 90 772 12 0.73 0.88 48.1 0.5 0.53 - - 0.74 0.87 48.78 0.53 0.57 - - 0.74 0.86 75.15 0.58 0.64 - -
037 76 689 15 7.94 33.01 394.71 6.45 29.64 - - 9.97 38.51 448.62 8.31 33.67 - - 8.54 35.79 415.74 7 31.55 - -
038 65 397 65 -
039 60 425 15 6.29 30.39 201.92 5.43 28.47 237.24 - 6.25 30.53 200.45 5.54 28.62 235.02 - 7.11 37.44 220.36 6.35 35.55 - -
040 64 485 11 91.24 199.8 - 89.95 202.05 - - 56.42 116.55 - 55.59 117.53 - - 95.98 208.79 - 95.62 212.43 - -
041 75 532 14 1.3 2.03 88.84 0.72 0.94 199.26 400.72 1.3 2.04 89.03 0.72 0.94 198.37 396.69 1.56 2.55 156.08 1.07 1.36 - -
042 51 411 10 0.27 0.4 6.5 0.14 0.23 - - 0.29 0.46 7.3 0.17 0.27 - - 0.28 0.42 7.15 0.16 0.26 - -
043 64 485 15 7.05 32.24 291.36 6.11 30.55 - - 7.08 32.28 289.31 6.14 30.47 - - 11.12 51.83 382.3 10.08 49.11 - -
044 95 862 18 72.44 447.37 - 65.41 425.08 - - 72.31 447.95 - 65.75 427.19 - - 87.21 554.19 - 80.83 523.58 - -
045 84 473 11 0.38 0.43 6.02 0.32 0.36 - - 0.33 0.39 7.11 0.28 0.32 - - 0.36 0.41 4.4 0.33 0.37 - -
046 91 557 11 5.09 7.86 118.91 4.47 7.12 - - 2.84 5.71 136.19 2.32 5.06 - - 3.97 6.76 79.91 3.4 6.18 - -
047 153 1239 12 2.25 2.57 36.24 2.07 2.39 - - 2.08 2.53 42.36 2.00 2.18 - - 2.19 2.61 55.22 2.13 2.51 - -
048 105 746 12 0.8 0.94 22.8 0.69 0.77 - - 0.72 0.84 25.17 0.64 0.72 - - 0.75 0.94 41.86 0.73 0.84 - -
049 76 689 6 0.1 0.12 0.1 0.07 0.08 - - 0.09 0.11 0.1 0.07 0.08 - 169.78 0.1 0.11 0.12 0.07 0.08 - -
050 90 772 7 0.18 0.21 0.39 0.15 0.18 - - 0.17 0.21 0.42 0.15 0.17 - - 0.18 0.21 0.38 0.16 0.19 - -
051 60 337 13 2.51 8.34 32.91 2.33 7.86 - - 1.5 6.3 44.29 1.29 6 - - 3.84 13.88 102.34 3.74 13.56 - -
052 56 207 56 - - - - - - - - - - - - - - - - - - - 230.17 -
053 70 326 16 166.48 - - 164.55 - - - 146.4 - - 145.42 - - - 141.16 - - 140.17 - - -
054 48 269 48 -
055 90 420 16 5.22 12.36 165.11 4.45 11.08 - - 2.08 6.64 193.91 1.43 5.3 - - 6.09 15.25 285.94 5.38 13.65 72.24 -
056 108 609 20 269.65 - - 261.49 - - - 111.11 - - 106.23 - - - 408.16 - - 404.36 - - -
057 95 862 13 12.17 35.53 108.03 11.04 34.17 - - 5.52 17.55 169.43 4.57 16.22 - - 10.21 32.9 428.89 9.26 32.18 - -
058 85 687 13 7.69 27.93 82.47 6.96 26.33 - - 5.11 20.36 142.89 4.36 19.22 - - 7 26.55 273.22 6.53 25.46 - -
059 144 1095 14 4.79 5.77 132.06 3.18 3.62 - - 3.85 4.75 158.83 2.34 2.68 - - 4.56 5.85 108.9 2.93 3.61 - -
060 135 960 12 1.66 2 40.93 1.46 1.66 - - 1.46 1.76 58.52 1.30 1.45 - - 1.59 1.91 33.98 1.47 1.66 - -
061 70 462 13 3.75 12.94 32.81 3.35 12.22 - - 1.67 7.03 50.84 1.38 6.56 - - 5.24 28.32 63.03 4.91 27.88 - -
062 60 337 60 -
063 75 532 13 3.82 11.16 41.65 3.32 10.32 - - 1.69 5.9 54.01 1.32 5.14 - - 7.42 35.13 99.89 6.99 34.6 - -
064 77 396 18 -
065 72 617 17 -
066 98 648 16 9.42 22.02 327.08 7.8 19.22 - - 4.8 13.65 413.84 3.33 10.43 - - 8.13 26.4 585.72 6.83 22.16 - -
067 171 1554 12 14.35 20.68 - 10.45 16 - - 8.8 12.37 - 5.22 8.22 - - 10.75 15.92 - 7.47 11.89 - -
068 98 648 20 178.87 - - 171.04 - - - 57.07 - - 51.69 - - - 111.05 - - 104.67 - - -
069 108 609 16 9.91 24.12 244.09 8.26 21.49 - - 5.16 16.43 354.72 3.94 13.6 - - 16.39 42.45 438.98 15.3 39.39 - -
070 72 617 13 11.09 33.38 81.23 10.55 32.26 - - 4.44 16.86 132.53 3.90 15.96 - - 5.84 23.5 151.84 5.31 22.2 - -
071 68 549 68 -
072 68 549 68 -
073 126 834 14 3.48 4.44 140.99 2.26 2.88 - - 2.53 3.22 145.74 1.50 1.81 - - 2.59 3.39 111.6 1.59 2.03 - -
074 126 1082 20 - - - - - - - 219.15 - - 209.78 - - - 290.55 - - 274.31 - - -
075 19 169 4 0.00 0.00 0.01 0.00 0.00 - 0.32 0.00 0.00 0.00 0.00 0.00 - 0.32 0.00 0.00 0.01 0.00 0.00 - 29.66
076 17 134 5 0.00 0.00 0.01 0.00 0.00 33.76 0.32 0.00 0.00 0.04 0.00 0.00 66.42 0.87 0.00 0.00 0.02 0.00 0.00 - 90.54
077 19 169 5 0.00 0.00 0.03 0.00 0.00 - 2.24 0.01 0.00 0.04 0.00 0.00 - 2.23 0.00 0.00 0.03 0.00 0.00 - 424.88
078 13 76 4 0.00 0.00 0.00 0.00 0.00 0.59 0.02 0.00 0.00 0.00 0.00 0.00 0.49 0.02 0.00 0.00 0.00 0.00 0.00 13.26 0.43
079 19 169 3 0.00 0.00 0.00 0.00 0.00 - 0.04 0.00 0.00 0.00 0.00 0.00 - 0.04 0.00 0.00 0.00 0.00 0.00 - 1.31
080 13 76 3 0.00 0.00 0.00 0.00 0.00 0.42 0 0.00 0.00 0.00 0.00 0.00 0.5 0.00 0.00 0.00 0.00 0.00 0.00 14.39 0.05
081 16 118 16 0.34 1.65 0.27 0.12 0.53 14.01 12.99 0.38 1.92 0.31 0.13 0.6 24.48 26.41 0.35 2.69 0.35 0.23 0.71 - -
082 20 188 3 0.00 0.00 0.00 0.00 0.00 - 0.02 0.00 0.00 0.00 0.00 0.00 - 0.06 0.00 0.00 0.00 0.00 0.00 - 2.01
083 20 188 5 0.00 0.00 0.03 0.00 0.00 - 1.06 0.00 0.00 0.03 0.00 0.00 - 3.49 0.00 0.00 0.03 0.00 0.00 - -
084 19 169 19 2.46 20.85 2.1 0.91 7.47 - - 2.48 21.01 2.09 0.93 7.5 - - 2.26 43.87 2.91 1.78 18.79 - -
085 754 895 61 - - - - - - - - - 119.57 - - - - - - 81.05 - - - -
086 604 2268 17 307.6 334.78 - 234.89 261.09 - - 167.57 183.48 - 102.96 115.74 - - 193.91 205.86 - 121.9 138.13 - -
087 960 2821 20 -
088 624 5298 17 -
089 631 2078 16 194.65 210.9 - 149.19 156.49 - - 171.23 186.29 - 137.13 149.71 - - 190.95 210.16 - 149.96 170.78 - -
090 100 154 10 0.42 0.49 0 0.39 0.47 - 563.26 0.4 0.47 0.00 0.39 0.45 - 23.77 10.6 10.68 10.2 10.6 10.69 - 68.25
091 86 134 14 0.39 0.47 0.98 0.15 0.18 - - 0.38 0.45 0.65 0.14 0.17 - 459.76 10.63 10.69 10.79 10.39 10.42 - -
092 99 147 12 0.41 0.49 0.02 0.38 0.45 - 259.65 0.39 0.47 0.02 0.38 0.44 - 80.86 10.61 10.68 10.23 10.6 10.7 - 79.26
093 98 154 12 0.4 0.48 0.05 0.36 0.43 - 226.26 0.38 0.45 0.03 0.36 0.42 - 518.4 10.61 10.68 10.23 10.59 10.67 - 407.21
094 98 152 10 0.39 0.46 0.01 0.3 0.36 - - 0.37 0.44 0.01 0.31 0.36 - 14.89 10.58 10.64 10.22 10.52 10.59 - 73.39
095 98 145 13 0.4 0.48 0.01 0.39 0.46 - - 0.38 0.46 0.01 0.39 0.45 - 437.65 10.59 10.67 10.21 10.61 10.7 - 232.59
096 95 153 17 0.87 1.28 17.19 0.46 0.81 - - 0.58 0.79 10.29 0.21 0.35 - - 10.75 11.02 18.97 10.39 10.57 - -
097 100 158 13 0.43 0.51 0.29 0.31 0.37 - - 0.42 0.49 0.20 0.31 0.35 - - 10.62 10.69 10.4 10.52 10.59 - -
098 96 153 18 1.09 1.43 27.88 0.27 0.44 - - 0.88 1.09 15.39 0.1 0.17 - - 11.14 11.4 21.47 10.35 10.48 - -
099 99 155 19 0.97 1.2 9.71 0.49 0.66 - - 0.75 0.89 6.26 0.34 0.41 - - 11.03 11.23 16.64 10.61 10.75 - -

5(a) : (⌈ ℓ
2
⌉, ⌊ ℓ

2
⌋)-DJ, (b) : (⌈ ℓ

2
⌉, ⌊ ℓ

2
⌋)-CP, (c) : (ℓ− 1, 1), (d) : (ℓ− 1, 1) + (⌈ ℓ

2
⌉, ⌊ ℓ

2
⌋)-DJ, (e) : (ℓ− 1, 1) + (⌈ ℓ

2
⌉, ⌊ ℓ

2
⌋)-CP,

(f) : MF1, (g) : MF2

9

