Divide-and-conquer Algorithms for Counting Paths using Zero-suppressed Binary Decision Diagrams

© Keita MAEDA[†], Takumi IWASAKI[†], Yuta FUJIOKA[†], Takumi SHIOTA[†], Toshiki SAITOH[†]

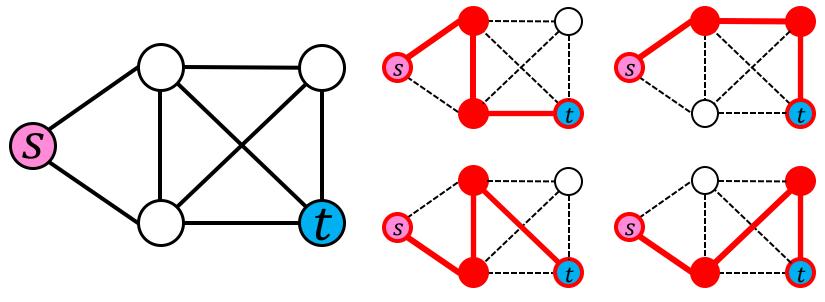
⁺ Kyusyu Institute of Technology

August 2, 2024

Path-counting problem

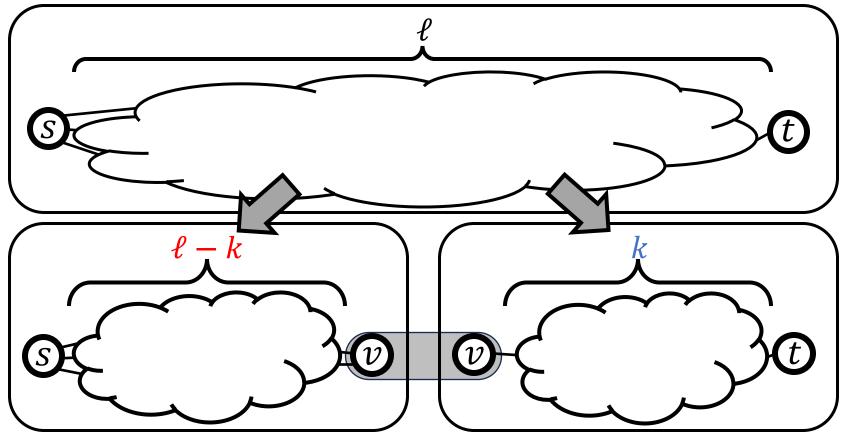
Input: A graph G(V, E), two terminals $(s, t) \in V$, and a nonnegative integer ℓ

Question: How many s-t paths of length ℓ exists in G ?

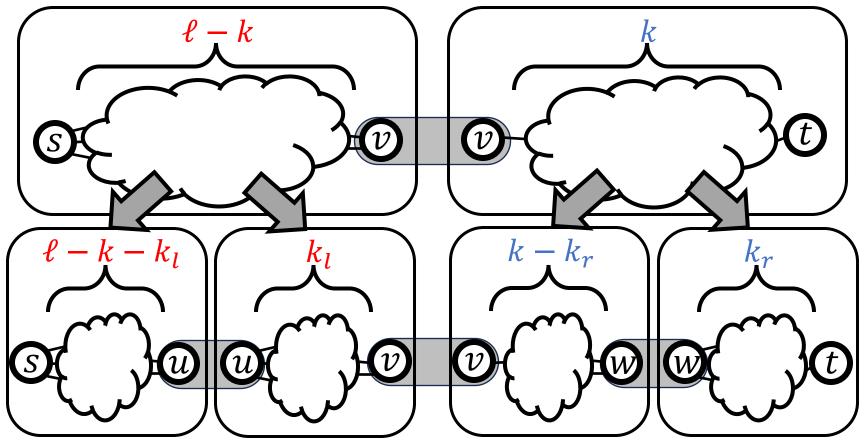


Lists of *s*-*t* paths of length 3

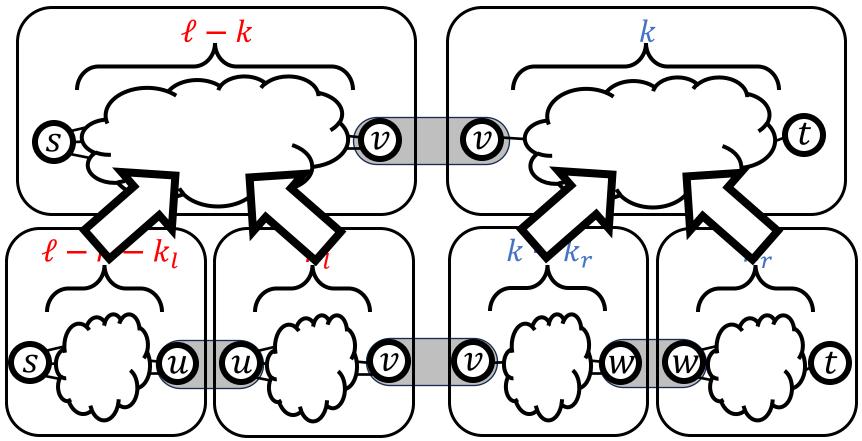
We divide the problem into sub-problems



We divide the problem into sub-problems

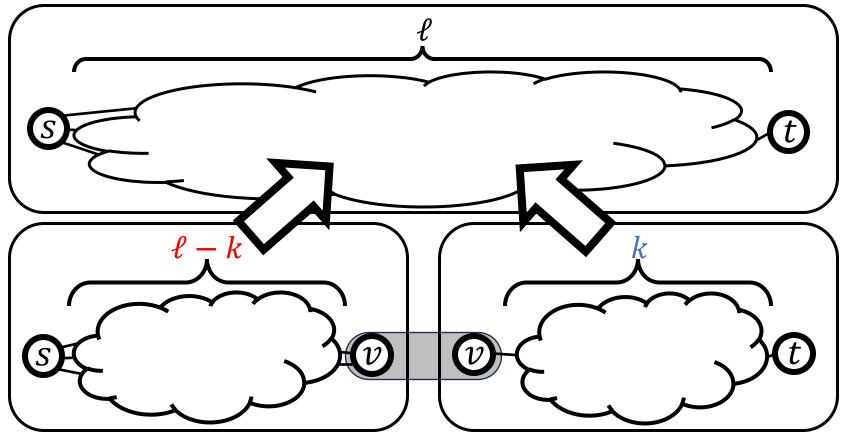


We divide the problem into sub-problems

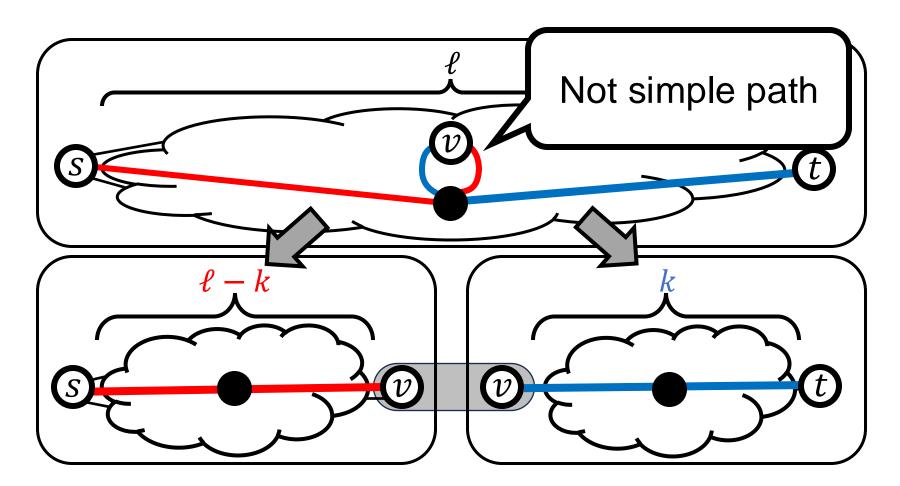


Multiple the number of paths

We divide the problem into sub-problems



Multiple the number of paths



Do not connect overlapping paths
→ Multiplication is imperfect for connecting paths

5

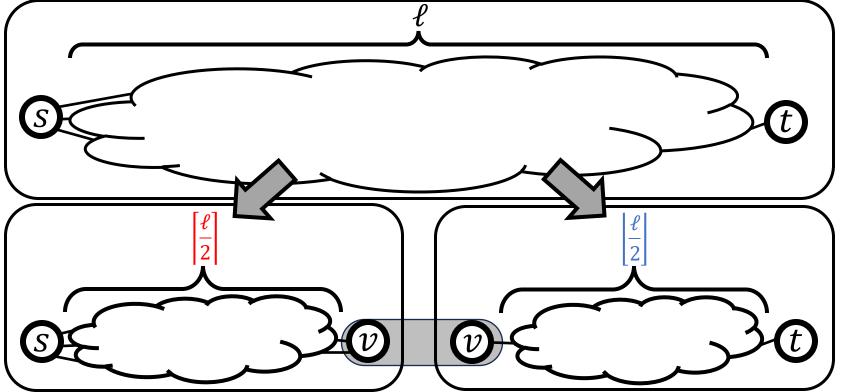
 There are performance differences due to the division length

- i. Half: $\left(\left[\frac{\ell}{2}\right], \left[\frac{\ell}{2}\right]\right)$
- ii. Edge by edge: $(\ell 1, 1)$
- iii. Hybrid of i and ii

Implement ZDD-based divide-and-conquer algorithm for the problem.

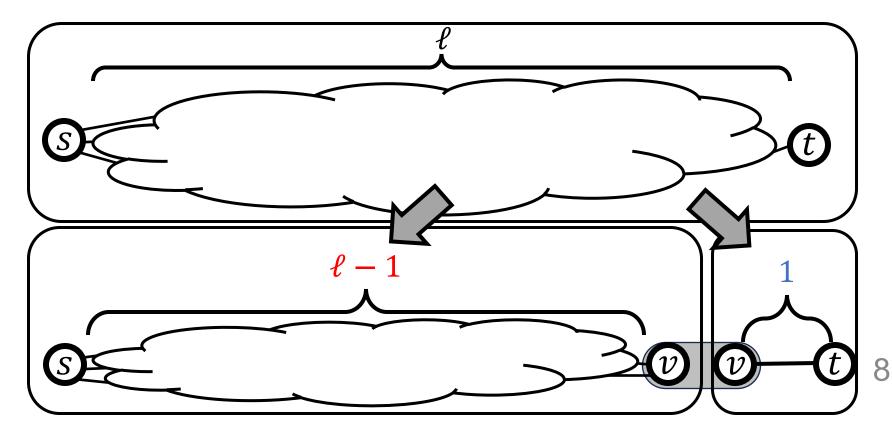
 There are performance differences due to the division length

i. Half:
$$\left(\left\lceil \frac{\ell}{2} \right\rceil, \left\lceil \frac{\ell}{2} \right\rceil\right)$$



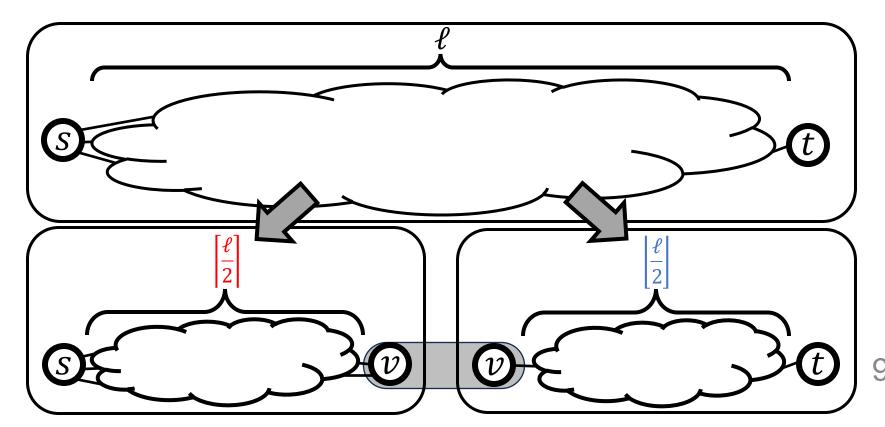
 There are performance differences due to the division length

ii. Edge by edge: $(\ell - 1, 1)$



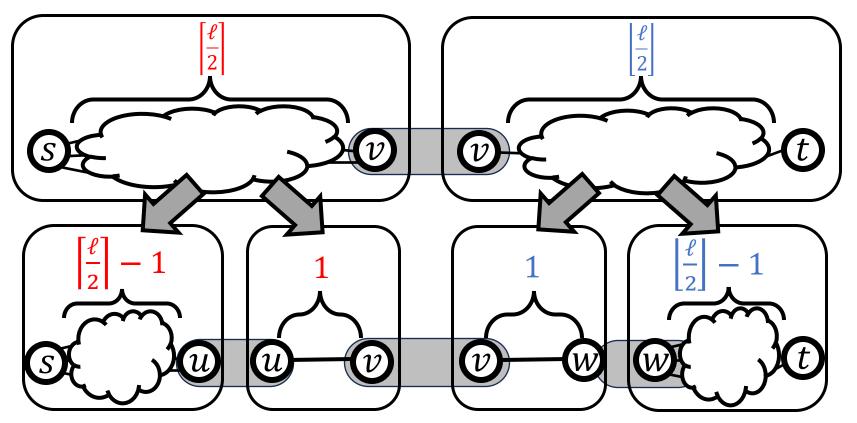
There are performance differences due to the division length

iii. Hybrid of i and ii



 There are performance differences due to the division length

iii. Hybrid of i and ii



 There are performance differences due to the division length

- i. Half: $\left(\left[\frac{\ell}{2}\right], \left[\frac{\ell}{2}\right]\right)$
- ii. Edge by edge: $(\ell 1, 1)$
- iii. Hybrid of 1 and 2

Implement ZDD-based divide-and-conquer algorithm for the problem.

ZDDs: Data structures representing families of sets compactly as directed graphs

[Example] Following ZDD representing $S = \{\{c\}, \{a, b\}, \{b, c\}\}$ {a, b}

 $v \in V \setminus \{s,t\}$

ZDDs provide <u>efficient family algebraic</u> <u>operations</u>

s-*v* paths of v-*t* paths of length $\ell - k$ length k

s-*t* paths of length *l*

Not suitable for connecting only nonoverlapping paths

→ We propose a new operation "disjoint join"

Computational experiments

Input: 100 instances (provided by ICGCA2023)

Timeout: 600 seconds / instance

Environment

CPU: Intel Xeon CPU E5-2643 v4 (3.40 GHz, 24 cores)

OS: CentOS 7.9 Memory : 512GB

Library Our algorithms: SAPPOROBDD Mate-frontier method: TdZdd

- : timeout (600s)

	Running time[s]			
No.	Half	Edge	Hybrid	Mate- Frontier
022	0.69	36.28	0.49	-
025	-	-	-	212.25
061	1.67	50.84	1.38	-
073	2.53	145.74	1.50	-
085	-	119.57	-	-
089	171.23	-	137.13	-

There are performance differences due to the divide length

- : timeout (600s)

	Running time[s]			
No.	Half	Edge	Hybrid	Mate- Frontier
022	0.69	36.28	0.49	-
025	-	-	-	212.25
061	1.67	50.84	1.38	-
073	2.53	145.74	1.50	-
085	-	119.57	-	-
089	171.23	-	137.13	-

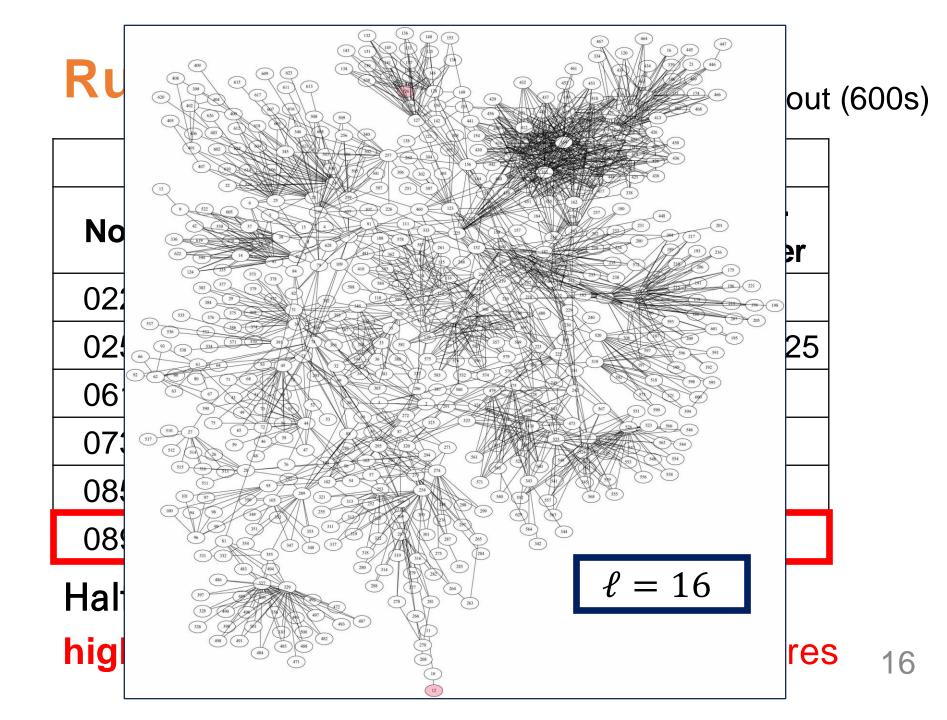
Hybrid calculates the fastest on half of instances.

- : timeout (600s)

	Running time[s]			
No.	Half	Edge	Hybrid	Mate- Frontier
022	0.69	36.28	0.49	-
025	-	-	-	212.25
061	1.67	50.84	1.38	-
073	2.53	145.74	1.50	-
085	-	119.57	-	-
089	171.23	-	137.13	-

Half and Hybrid are solvable for

higher |E|/|V| ratio with clique-like structures

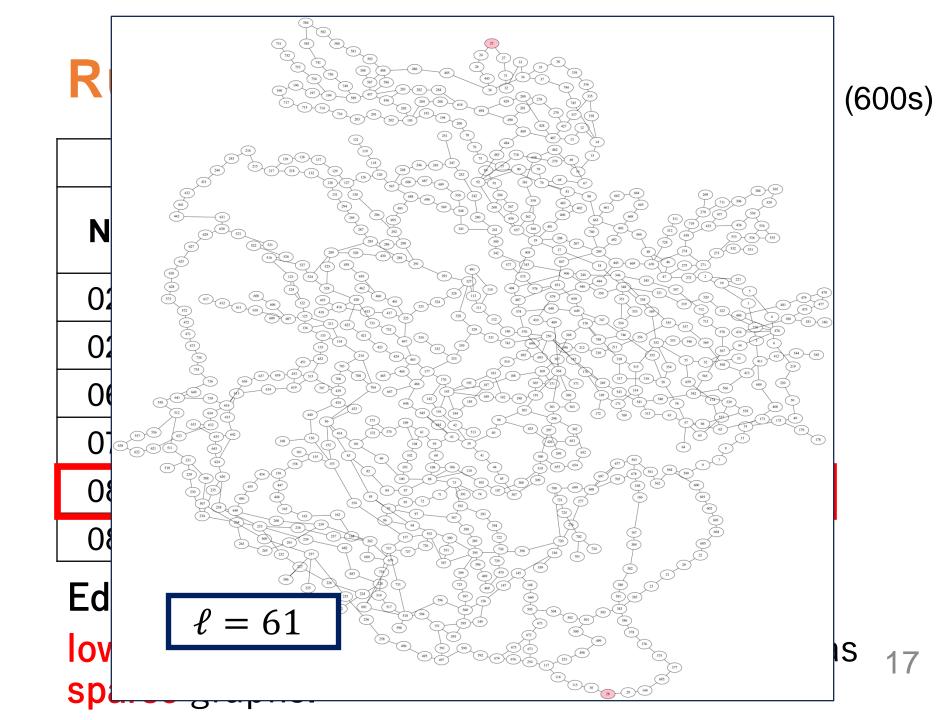


- : timeout (600s)

	Running time[s]			
No.	Half	Edge	Hybrid	Mate- Frontier
022	0.69	36.28	0.49	-
025	-	-	-	212.25
061	1.67	50.84	1.38	-
073	2.53	145.74	1.50	-
085	-	119.57	-	-
089	171.23	-	137.13	-

Edge is solvable for

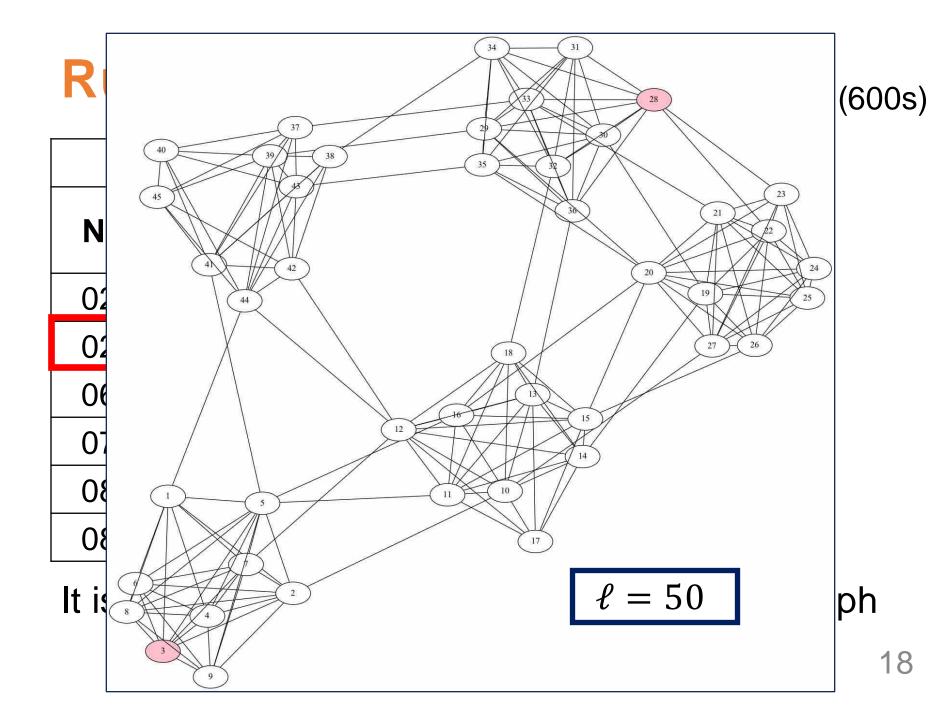
lower |E|/|V| ratio, which are characterized as 17 sparse graphs.



- : timeout (600s)

	Running time[s]			
No.	Half	Edge	Hybrid	Mate- Frontier
022	0.69	36.28	0.49	-
025	-	-	-	212.25
061	1.67	50.84	1.38	-
073	2.53	145.74	1.50	-
085	-	119.57	-	-
089	171.23	-	137.13	-

It is hard to calculate long path in densely graph



Conclusion

Implement ZDD-based divide-and-conquer algorithms for path-counting problem

 Observe the types of graph structures corresponding to division length

Future work:

More experiment with various characteristics (pathlength, pathwidth, maximum clique size, etc.)