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An unfolding of a polyhedron is a flat polygon obtained by cutting along the poly-
hedron’s cutting lines and flattening its faces onto a plane. The origin of unfoldings
can be traced back to Albrecht Dürer’s work in 1525. Depending on the shape of the
polyhedron and the method of unfolding, the resulting shape may overlap, where
two distinct faces intersect on the plane, or their boundaries are in touch. When the
cutting lines are restricted to the edges of the polyhedron, the unfolding is called an
edge unfolding. Shephard proposed the conjecture that for any convex polyhedron,
at least one non-overlapping edge unfolding exists; however, this conjecture remains
unsolved.

To solve this conjecture, some studies are ongoing. Horiyama et al. showed that
the edge unfoldings of Platonic solids and five types of Archimedean solids do not
have overlaps. On the other hand, overlapping edge unfoldings have been found
for five other types of Archimedean solids. There remains the problem of whether
overlapping edge unfoldings exist for other convex regular-faced polyhedra, such as
the snub cube, icosidodecahedron, rhombitruncated cuboctahedron, Archimedean
prisms, Archimedean antiprisms, and Johnson solids.

For cuboids, when the cutting lines are aligned with the unit squares on the faces,
the unfolding is called a lattice unfolding. Uno showed that the lattice unfolding of
a 1×1×z cuboid, where z ≥ 3, has overlapping lattice unfoldings, and Mitani et al.
showed an overlapping lattice unfolding for an x× y × z cuboid with x ≥ 1, y ≥ 2,
and z ≥ 3. Conversely, Hearn showed that the lattice unfolding of a 1×1×2 cuboid
does not overlap, and Sugihara demonstrated the same for a 2 × 2 × 2 cuboid.
However, determining the conditions under which overlapping lattice unfoldings
exist for cuboids with diagonal lattice cutting lines remains an open problem.

In this study, we address two main problems. The first problem is determining
whether a given polyhedron has overlapping unfoldings. The second problem is
counting the number of overlapping and non-overlapping unfoldings when a given
polyhedron has overlapping unfoldings.

For the first problem, we introduce an algorithm called rotational unfolding,
which efficiently determines whether overlapping unfoldings exist for a given poly-
hedron. The basic principle of our method is similar to the rolling and unfolding
method proposed by DeSplinter et al., but it is extended to n-gons by proposing
pruning techniques that use a polyhedron’s distance properties and symmetry. Us-
ing this algorithm, we show the existence of overlapping unfoldings for both edge
unfoldings of convex regular-faced polyhedra and lattice unfoldings of cuboids. As a
result, we solve the problem of whether overlapping edge unfoldings exist for convex
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regular-faced polyhedra and present the conditions for overlapping lattice unfoldings
in cuboids with diagonal lattice cutting lines.

For the second problem, we propose an algorithm to count non-overlapping un-
foldings in polyhedra that have overlapping unfoldings. The algorithm first enumer-
ates the minimal overlapping partial unfoldings (MOPUs), which are the minimal
units of edge unfoldings with overlaps. Then, we construct a zero-suppressed binary
decision diagram (ZDD) representing non-overlapping unfoldings by subtracting the
ZDDs of overlapping edge unfoldings containing the MOPUs from the ZDD repre-
senting all edge unfoldings. By applying this algorithm, we calculate the number
of non-overlapping edge unfoldings for several convex regular-faced polyhedra and
lattice unfoldings of cuboids. These results provide partial answers to the problems
of counting overlapping and non-overlapping unfoldings for given polyhedra.
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Chapter 1

Introduction

An unfolding of a polyhedron is a flat polygon obtained by cutting along the polyhe-
dron’s cutting lines and unfolding the polygon onto a plane. The origin of unfoldings
is recognized as the illustrations found in Albrecht Dürer’s “Underweysung der mes-
sung mit dem zirckel un richt scheyt” [Dür25], published in 1525 [DO07]. However,
depending on the shape of the polyhedron and how it is unfolded, unfoldings can
sometimes result in overlapping polygons, i.e., two distinct faces overlap, or their
boundaries are in touch (see Figure 1.1). If we restrict the cutting lines to the edges
of the polyhedron, the unfolding is called an edge unfolding. Shephard proposed the
following conjecture about edge unfoldings.

Conjecture 1.1 ( [She75]). For any convex polyhedron, at least one non-overlapping
edge unfolding exists.

This conjecture is still unsolved, and some studies to solve it are ongoing. One
such study is determining whether an overlapping edge unfolding exists for a given
polyhedron. Biedl et al. in 1998 and Grünbaum in 2003 showed that there exist non-
convex polyhedra whose every edge unfolding overlaps [BDD+98,Grü03]. Schlick-
enrieder showed that n-gonal prisms have overlapping edge unfoldings, as shown in
Figure 1.2. There are some results for convex regular-faced polyhedra, which are
polyhedra with no concave regions and are composed entirely of regular polygons
(see Table 1.1). This is because focusing on simpler structures is a natural starting
point. When we deal with simpler structures, the algorithms become easier to imple-
ment, and it is simpler to check whether the approach works. Once these basic cases
are well understood, they can serve as foundational ideas for developing algorithms
that handle more complex structures. Horiyama and Shoji presented an algorithm
for enumerating overlapping edge unfoldings of polyhedra, and they also showed
that Platonic solids do not have any overlapping edge unfoldings [HS11]. Their al-
gorithm first enumerates edge unfoldings, which are represented as spanning trees
of a polyhedral graph, using binary decision diagrams (BDDs) and then checks the
overlapping by numerical calculations for each unfolding. Additionally, a truncated
dodecahedron, truncated icosahedron, rhombicosidodecahedron, rhombitruncated
icosidodecahedron, and a snub dodecahedron (all of which are Archimedean solids,
see Figure 1.3) are known to have overlapping edge unfoldings [CFG91,HS11]. Hi-
rose showed that five shapes of Archimedean solids do not have overlapping edge
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Figure 1.1: A cube with truncated corners and its overlapping unfolding [NF93].

(a) 12-gonal prism (b) 15-gonal prism

Figure 1.2: Overlapping edge unfoldings for n-gonal prisms.

unfoldings by enumerating paths between two faces of the polyhedron and check-
ing whether those paths have any overlaps [Hir15]. On the other hand, for edge
unfoldings of convex regular-faced polyhedra, the following problem remains:

Problem 1.2 (see Table 1.1). Do three types of Archimedean solids (a snub cube,
an icosidodecahedron, or a rhombitruncated cuboctahedron), n-gonal Archimedean
prisms, m-gonal Archimedean antiprisms, and Johnson solids have overlapping edge
unfoldings?

There are also some results for higher-dimensional polyhedra. DeSplinter et al.
recently showed that the edge unfoldings of high-dimensional cubes and demon-
strated that a spanning tree of a Roberts graph can represent an edge unfold-
ing [DDRW20]. They proposed a rolling and unfolding method, where the cubes
are rotated along a spanning tree and the edges are cut to avoid overlap.

There are studies on general unfoldings that allow cutting the faces of the
polyhedron, not just its edges. Sharir et al. in 1986 and Aronov et al. in 1992
showed a method for the general unfolding of any convex polyhedron without over-
laps [SS86,AO92]. Thus, there is a gap between edge unfoldings and general unfold-
ings. Bridging this gap is necessary as a foothold on Conjecture 1.1. There are also
general unfoldings where we can cut only along specific candidate lines drawn on the
faces. One such example is the pseudo-edge unfolding, where the vertices correspond
to the original vertices of the polyhedron, the edges are distance-minimizing geodesic
paths between pairs of vertices, and the unfolding requires cuts along the shortest
paths for each pair of vertices. Barvinok and Ghomi showed an example of a convex
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Table 1.1: Overlapping edge unfoldings for convex regular-faced polyhedra.

Convex regular-faced polyhedra Is there an overlapping edge unfolding?

Platonic solids (Total 5 types) No [HS11]

Archimedean solids (Total 13 types)
No (5 types) [Hir15]

Yes (5 types) [CFG91,HS11]
Open (3 types)

Johnson solids (Total 92 types) Open
n-gonal Archimedean prisms (n ≥ 3) Open

m-gonal Archimedean antiprisms (m ≥ 3) Open

(a) Truncated dodecahedron (b) Truncated icosahedron

(c) Rhombicosidodecahedron (d) Rhombitruncated
icosidodecahedron

Figure 1.3: Examples of overlapping edge unfoldings in Archimedean solids [HS11].
The right edge unfolding can be obtained by cutting along the thick line of the left
polyhedron.

polyhedron that does not have a non-overlapping pseudo-edge unfolding [BG20].
Another example is the lattice unfolding of a cuboid formed by connecting multiple
1 × 1 × 1-cubes. In lattice unfolding, we cut along the edges of the lattice formed
by unit squares. In 2008, Uno showed that a 1 × 1 × 3 cuboid, and Mitani et al.
showed that an 1×2×3 cuboid have overlapping lattice unfoldings, as shown in Fig-
ure 1.4 [Uno08,MU08]. Additionally, each of these cutting methods can be extended
to the 1 × 1× z cuboid where z ≥ 3 and the x× y × z cuboid where x ≥ 1, y ≥ 2
and z ≥ 3, respectively. The following theorems are obtained:

Theorem 1.3 ( [Uno08]). The 1 × 1 × z cuboid, where z ∈ N and z ≥ 3, has an
overlapping lattice unfolding.

Theorem 1.4 ( [MU08]). The x × y × z cuboid, where x, y, z ∈ N, x ≥ 1, y ≥
2, z ≥ 3, and x ≤ y ≤ z, has an overlapping lattice unfolding.
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(a) 1× 1× 3 cuboid. (b) 1× 2× 3 cuboid.

Figure 1.4: Examples of overlapping lattice unfoldings for cuboids.

Figure 1.5: An example of a cuboid with diagonal lattice cutting lines. Solid lines
are cutting lines, and dashed lines are non-cutting lines. Cut along the thick lines
on the left cuboid to obtain the lattice unfolding on the right.

On the other hand, the following results are known for the non-existence of
overlapping lattice unfolding:

Theorem 1.5 ( [Hea18]). The 1×1×2 cuboid has no overlapping lattice unfolding.

Theorem 1.6 ( [Sug18]). The 2×2×2 cuboid has no overlapping lattice unfolding.

Furthermore, cutting lines can be taken not only parallel to the edges of the
cuboid but also diagonally, as shown in Figure 1.5. Thus, when considering cutting
lines that can also be diagonal, we can consider the following problem:

Problem 1.7. For cuboids with diagonal lattice cutting lines, what are the conditions
for overlapping unfoldings?

There are studies on counting the number of unfoldings. The number of edge
unfoldings (including those with overlaps) is known to be equal to the number of
spanning trees formed by the cutting edges of the polyhedron. Similarly, the num-
ber of lattice unfoldings (including those with overlaps) corresponds to the number
of Steiner trees that satisfy specific conditions on the cutting lines of the polyhe-
dron [MU08]. We can count the number of spanning trees using Kirchhoff’s theo-
rem [Lew82]. Additionally, both spanning trees and Steiner trees can be efficiently
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Figure 1.6: Schevon’s experiment on randomly generated convex polyhedra. Each
point represents the average percentage of non-overlapping edge unfoldings for five
randomly generated convex polyhedra. The percentage is the proportion of overlap-
ping unfoldings among 1000 randomly selected edge unfoldings for each polyhedron.

counted using a data structure called binary decision diagrams (BDDs) [Bry86]
or zero-suppressed binary decision diagrams (ZDDs) [Min93]. BDDs/ZDDs are
compact data structures for representing families of sets and support algebraic
operations on these families (i.e., union, intersection, and set difference). Ad-
ditionally, BDDs/ZDDs allow for counting, enumeration, and extraction of opti-
mal families of sets. BDDs/ZDDs are used to enumerate specific structures on
graphs [KIIM17]. Horiyama et al. used BDDs/ZDDs to enumerate spanning trees
and count the number of edge unfoldings for convex regular-faced polyhedra [HS13,
HMS18]. Horiyama and Shoji proposed a method for counting the number of non-
overlapping edge unfoldings for Platonic solids by extracting each spanning tree one
by one from BDDs [HS11]. However, this method only applies to the polyhedra with
few edge unfoldings. For example, the truncated icosahedron (Figure 1.3 (b)) has
375, 291, 866, 372, 898, 816, 000 (approximately 3.75× 1020) edge unfoldings [HS13],
so checking each unfolding one by one would take over ten thousand years with
current computers. Based on this, Schevon adopted a method of randomly selecting
edge unfoldings [Sch89]. She showed that for randomly generated convex polyhe-
dra, the percentage of non-overlapping edge unfoldings decreases as the number
of vertices increases, as shown in Figure 1.6. On the other hand, when a polyhe-
dron has overlapping unfoldings, the exact number of overlapping / non-overlapping
unfoldings is not known. Therefore, we can consider the following two problems.

Problem 1.8. Given a convex regular-faced polyhedron with overlapping edge un-
foldings, how many overlapping / non-overlapping unfoldings are there?

Problem 1.9. Given a cuboid with overlapping lattice unfoldings, how many over-
lapping / non-overlapping lattice unfoldings are there?
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Our Contributions In this study, we addressed two problems. The first problem
is to determine whether a given polyhedron has overlapping unfoldings. The second
problem is counting the number of overlapping and non-overlapping unfoldings when
a given polyhedron has overlapping unfoldings.

For the first problem, we propose a method for determining an overlapping edge
unfolding called rotational unfolding for a polyhedron. The basic principle of our
method is similar to that of the rolling and unfolding method. First, a polyhedron
is placed on a plane, and the following three steps are performed repeatedly: cutting
the bottom edges, rotating the polyhedron in the plane, and searching for overlap-
ping edge unfoldings. The rolling and unfolding method is suitable for determining
edge unfoldings for high-dimensional cubes but is not applicable to general shapes.
Therefore, we extend the method to n-gons by proposing pruning techniques in
the rotational unfolding that use a polyhedron’s distance property and symmetry
to determine overlapping unfoldings efficiently. As a result, we solve Problem 1.2,
proving the existence of overlapping edge unfoldings for convex regular-faced poly-
hedra. Additionally, by extending the rotational unfolding to the lattice unfolding
of cuboids, we also present the conditions for Problem 1.7.

For the second problem, we propose an enumeration algorithm for counting non-
overlapping unfoldings in a given polyhedron using ZDDs and their operations. The
algorithm first enumerates the minimal overlapping partial unfoldings (MOPUs),
which are the minimal units of edge unfoldings with overlaps (the gray faces in Fig-
ure 1.1 correspond to this). Next, we construct a ZDD representing non-overlapping
unfoldings by subtracting the ZDDs of overlapping edge unfoldings containing the
MOPUs from the ZDD representing all edge unfoldings. We apply this algorithm
to the edge unfoldings of convex regular-faced polyhedra and the lattice unfoldings
of cuboids, counting the number of non-overlapping unfoldings for various convex
polyhedra. These results provide partial answers to Problems 1.8 and 1.9.



Chapter 2

Preliminaries

2.1 Graph

Let G = (V,E) be a simple graph where V is a set of vertices and E ⊆ V × V is a
set of edges. A sequence of vertices ⟨v1, . . . , vk⟩ is a path if vi ̸= vj (vi, vj ∈ V, 1 ≤
i ̸= j ≤ k) and every consecutive two vertices are adjacent. A graph is connected
if a path exists between any two vertices of the graph. If a graph T = (VT , ET ) is
connected and |ET | = |VT |− 1, the graph is called a tree. A tree T = (VT , ET ) is a
spanning tree of G if VT = V and ET ⊆ E. For a subset of vertices V ′ ⊆ V in graph
G, the graph G[V ′] = (V ′, {(p, q) | p, q ∈ V ′ and (p, q) ∈ E}) is called the subgraph
induced by V ′.

2.2 Convex regular-faced polyhedron

A polyhedron is a three-dimensional object consisting of at least four polygons,
called faces, joined at their edges. A convex polyhedron is a polyhedron with the
interior angles of all two faces less than π. A convex regular-faced polyhedron is
a convex polyhedron with all faces being regular polygon. A Platonic solid is a
convex regular-faced polyhedron with faces composed of congruent regular polygons.
An n prism is a polyhedron composed of two identical n-sided polygons, called
bases, facing each other, and n parallelograms, called side faces, connecting the
corresponding edges of the two bases. An n antiprism is a polyhedron composed of
two bases of congruent n-sided polygons and 2n-sided alternating triangles. An n-
gonal (anti)prism is an n (anti)prism if the bases are n-sided regular polygons and an
n-gonal Archimedean (anti)prism is an n-gonal (anti)prism if it is a convex regular-
faced polyhedron (i.e., the side faces are also regular). An Archimedean solid is a
convex regular-faced polyhedron composed of regular polygons with the same type
and order of regular polygons gathered at the vertices, except for Platonic solids, and
Archimedean (anti)prisms. A Johnson solid is a convex regular-faced polyhedron,
except Platonic solids, Archimedean solids, and Archimedean (anti)prisms. It is
known that there are 92 Johnson solids [Joh66].

7
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2.3 Edge unfolding

Let Q be a polyhedron. An unfolding (also called a net, a development, or a general
unfolding) of the polyhedron Q is a flat polygon formed by cutting Q’s edges or
faces and unfolding it into a plane. An edge unfolding of Q is an unfolding formed
by cutting only edges. Q can be viewed as a graph GQ = (VQ, EQ), where VQ is a
set of vertices and EQ is a set of edges. We have the following lemma for an edge
unfolding of Q.

Lemma 2.1 (see e.g., [DO07] Lemma 22.1.1). The cut edges of an edge unfolding
for Q form a spanning tree of GQ.

This lemma implies that counting the spanning trees of Q is equal to counting
the edge unfoldings of Q. Two faces in Q are neighbors if they contain a common
edge. The dual graph of a polyhedron Q is a graph GD = (VD, ED), where each
vertex in VD corresponds to a face of Q, and two vertices are connected by an edge
in ED if and only if the corresponding faces are adjacent. A spanning tree of the
dual graph of Q can also be considered an edge unfolding [Sch97]. A partial edge
unfolding is a flat polygon consisting of a set of faces that correspond to a connected
induced subgraph of GD.

We say that two distinct polygons overlap if there exists a point p contained in
both of the two polygons. Note that any point on a boundary is included in the
polygons in this paper. That is, the polygons overlap if they are in contact on the
boundaries. An unfolding is overlapping if there exists a pair of distinct faces such
that the faces overlap. The following proposition is used to determine whether an
edge unfolding of a polyhedron Q is overlapping.

Proposition 2.2 ( [HS11]). If the circumscribed circles of the two faces do not
overlap for any two faces in an edge unfolding, then the edge unfolding is not over-
lapping.

This proposition is useful for efficiently checking the overlapping of an edge
unfolding, and it is a necessary condition for overlapping edge unfoldings. If the
circumscribed circles of two faces of Q intersect, we use numerical calculations to
check the overlapping.

A minimal partial overlapping edge unfolding (MOPE) is a path-like partial edge
unfolding that consists of faces along any path between two vertices in an induced
subgraph of GD, with overlapping faces at the two end vertices. Note that “minimal”
means that removing any additional faces would make the unfolding lose its path-like
structure; it does not imply that the unfolding has the smallest possible number of
faces. Figure 2.1 shows examples of MOPEs and non-MOPE partial edge unfoldings.

One method for counting spanning trees in a graph is using a Zero-suppressed
Decision Diagram (ZDD). A ZDD is a data structure that represent families of sets
compactly as a directed acyclic graph. In a ZDD, there are two types of nodes:
terminal nodes with the out-degree zero ⊤, ⊥, and branching nodes. Branching
nodes are labeled by elements of the set, and each has two outgoing edges: a 1-
edge and a 0-edge. The 1-edge means the inclusion of the labeled element, while
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Figure 2.1: Examples of MOPEs and non-MOPEs in Johnson solid J21. In (a)
and (c), they are MOPEs because removing any additional faces would make them
disconnected. In (b) and (d), removing the gray faces results in MOPEs.

Figure 2.2: (a) An example of the graph C4 and its spanning trees. (b) A ZDD
representing the spanning trees of C4. Circles represent branching nodes, labels are
inside the circles, solid lines represent 1-edges, and dashed lines represent 0-edges.
A path from the root node (labeled e0) following a 1-edge, a 1-edge, a 0-edge, and
a 1-edge leading to ⊤ means that the set {e0, e1, e3} forms a spanning tree.

the 0-edge means the exclusion of the element. In a ZDD, there is a root node
with no incoming edges. Figure 2.2 shows an example of the ZDD representing a
spanning tree. ZDDs have some operations, such as union, intersection, and set
difference. Additionally, ZDDs allow for counting, enumeration, and extraction of
optimal families of sets [Min93].

2.4 Lattice cuboid

Let’s consider a square lattice where each square has an area of 1 × 1. Suppose
A = (a, 0) and B = (0, b) are a pair of lattice points, where a ∈ N+, b ∈ N, a ≥ b, as
shown in Figure 2.3. Consider a square with side AB, whose length is L =

√
a2 + b2.

A cube with a side length of L is constructed by assembling squares as its faces (an
example is shown in Figure 2.4).

An (xL, yL, zL)-cuboid is defined as a box with edge lengths xL, yL, and
zL along the x-axis, the y-axis, and the z-axis, respectively, where x, y, z ∈ Z+

(an example is shown in Figure 2.5). Here, x ≤ y ≤ z is assumed without
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Figure 2.3: Definition of the edge length L of a cube.

Figure 2.4: A cube with a side of length
√
10 (a = 3, b = 1).

loss of generality. We only consider the cuboids that satisfy gcd(a, b) = 1 be-
cause the (c(xL), c(yL), c(zL))-cuboid (multiplied (xL, yL, zL)-cuboid by c) and
the (x(cL), y(cL), z(cL))-cuboid (multiplied (cL, cL, cL)-cuboid by x, y, z) can be
regarded as the same shape (see Figure 2.6).

2.5 Lattice unfolding

A lattice unfolding of a cuboid C is a planar shape obtained by cutting along the
edges of unit squares on the faces of the cuboid. C can be viewed as a graph
GC = (VC , EC), where VC is a set of vertices and EC is a set of edges of C. We have
the following lemma for a lattice unfolding of C.

Lemma 2.3 ( [MU08] Theorem 1, Theorem 3, and Figure 2.8). Let S(VC) ⊆ VC be
the set of lattice points located at the vertices of C. Then, the following are equivalent
for a subgraph GL ⊆ GC:

(1) A lattice unfolding can be obtained by cutting along GL.

(2) GL is a tree that satisfies S(VC) ⊆ GL, and for any vertex v in GL, if the degree
of vertex v is 1, then v ∈ S(VC).

Figure 2.5: A (3
√
10, 2

√
10,

√
10)-cuboid obtained by assembling six units of the

cube shown in Figure 2.4 (x = 3, y = 2, z = 1).
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(a) a = b = 1, gcd(a, b) = 1,

L =
√
2, x = y = z = 2

(b) a = b = 2, gcd(a, b) = 2,

L = 2
√
2, x = y = z = 1

Figure 2.6: Two (2
√
2, 2

√
2, 2

√
2)-cuboids that can be regarded as the same shape.

This paper focuses only on (a).

Figure 2.7: An example of a lattice unfolding of a (
√
10, 2

√
10, 3

√
10)-cuboid (Fig-

ure 2.5). Note that dotted lines are fold lines and not cutting lines.

The dual graph of a cuboid C can be viewed as a graph GDC = (VDC , EDC),
where each vertex in VDC corresponds to a unit square of C and two vertices are
connected by an edge in EDC if and only if the corresponding unit squares are
adjacent. A partial lattice unfolding is a flat polygon consisting of a set of faces that
correspond to a connected induced subgraph of GDC .

In a lattice unfolding, the original cuboid’s unit squares are arranged on a plane,
with their edges connected. The relationship between any pair of unit squares that
are not adjacent on the original cuboid is classified as follows:

(1) Overlap in the same position (Figure 2.9 (a)).

Figure 2.8: An example of a cutting line in a (3, 3, 3)-cuboid. The cutting line forms
a tree that includes all eight lattice cuboid vertices (the starred ones).
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(2) Share one edge (Figure 2.9 (b)).

(3) Share one vertex (Figure 2.9 (c)).

(4) Do not share any edges or vertices.

Herein, we say that a lattice unfolding is faces-in-touch if it has a pair of unit
squares satisfying (1). Similarly, we define edges-in-touch and vertices-in-touch for
conditions (2) and (3), respectively. When all pairs of unit squares that are not adja-
cent on the original cuboid satisfy condition (4), we say the lattice unfolding is non-
overlapping. Conversely, if any of the conditions (1), (2), or (3) is satisfied, we say
the lattice unfolding is overlapping. Note that for any cuboid, the following inclusion
relationship holds: {faces-in-touch unfoldings} ⊂ {edges-in-touch unfoldings} ⊂
{vertices-in-touch unfoldings}.

A minimal partial overlapping lattice unfolding (MOPL) is a path-like partial
lattice unfolding that consists of faces along any path between two vertices in an
induced subgraph of GDC , with overlapping faces at the two end vertices. Figure 2.10
shows examples of MOPLs and non-MOPL partial lattice unfoldings.
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(a) Faces-in-touch unfolding

(b) Edges-in-touch unfolding

(c) Vertices-in-touch unfolding

Figure 2.9: Overlapping lattice unfolding in the (1, 2, 3)-cuboid [MU08].

Figure 2.10: Example of an MOPL and a non-MOPL in a (1, 2, 5)-cuboid. In (a), it
is an MOPL because removing any additional faces would make them disconnected.
In (b), removing faces L and M results in a MOPL.





Chapter 3

Overlapping unfolding for convex
polyhedra

3.1 Rotational unfolding

In this section, we first propose an algorithm for detecting overlapping edge un-
foldings for a polyhedron Q. A spanning tree T (U) of the dual graph GD of Q
represents an edge unfolding U . We can determine all overlapping edge unfoldings
by enumerating all spanning trees of GD and then checking the overlapping of the
corresponding unfoldings. However, a polyhedron generally contains a large number
of spanning trees. Our algorithm employs Lemma 3.1 to enumerate the paths rather
than the spanning trees to efficiently search for overlapping edge unfoldings.

Lemma 3.1 ( [DDRW20, Hir15]). Let U be an overlapping edge unfolding of a
polyhedron Q, and T (U) be a spanning tree corresponding to U in the dual graph
GD. If two nodes n, n′ ∈ T (U) correspond to overlapping faces in U , then the path
from n to n′ in T (U) represents a consecutive sequence of overlapping faces in U .

For a polyhedron Q, we present a simple and recursive procedure called rotational
unfolding to find paths and check their overlap. In this procedure, we first place Q
in the plane. The start face fs of Q is the bottom face. We rotate Q and unfold
the current bottom in the rotational unfolding. Let fℓ be the current bottom face,
called the last face. In the first step of the procedure, fℓ is the start face fs. The
rotational unfolding first checks whether there exists a neighbor face of fℓ in Q.
Then, for each neighbor face f , we run the following three steps: we cut the edges
of fℓ except for the edge sharing f , roll the polyhedron Q to be the bottom f , and
check the overlap between fs and f . To check the overlapping of edge unfoldings,
we compute the coordinate of the circumscribed circle’s center of f from that of
fℓ and the angle of the shared edge. Then, we check the overlap between fs and
f using Proposition 2.2 or numerical calculations. Let vfs and vf be the vertices
corresponding to the face fs and f of the dual graph GD of Q, respectively. If fs
and f overlap, we output a part of the edge unfolding corresponding to a path from
vfs to vf . Otherwise, we run the procedure recursively. Figure 3.1 illustrates the
rotational unfolding procedure.

15
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Phase 1 Phase 2

Phase 3 Phase 4

Phase 5 Phase 6

Phase 7

Figure 3.1: Illustration of rotational unfolding.
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(a) (b)

Figure 3.2: An example of a symmetric partial edge unfolding with respect to the
x-axis. If (a) is reflected along the x-axis, (b) is obtained.

Although the number of paths is smaller than the number of spanning trees, it
is still large. To reduce the search space, we implement three methods for speeding
up the search. The first method uses the simple distance property. Let D be the
Euclidean distance between the circumscribed circle’s center of fs and that of f , rs
and r be the circumscribed circle radii of fs and f , respectively, and W be the sum
of circumscribed circle diameters of the remaining faces in Q. For fs and a face in
Q to overlap, the distance between fs and f has to be smaller than W ; that is, if
W + rs + r < D, fs does not overlap any other faces in Q for any unfolding because
fs is too far from the other faces in Q. Thus, if W + rs + r < D, we prune the
search.

The second method uses the symmetry of the polyhedron. Figure 3.2 shows
a symmetric edge unfolding. If a polyhedron has such symmetric unfoldings, we
only compute one of them to check if a self-overlapping edge unfolding exists. To
implement this pruning, we maintain the y-coordinate of the circumscribed circle’s
center of the last face before it becomes non-zero. We prune the search if the y-
coordinate becomes negative for the first time. Note that this pruning does not work
for a snub cube, a snub dodecahedron, and Johnson solids because they do not have
mirror symmetry.

In the third method, we run the rotational unfolding by fixing a few steps of the
search. In the rotational unfolding, we first select the start face fs and then roll the
polyhedron Q in every possible direction. However, when Q has symmetry, it allows
us to fix both the start face fs and the rolling direction. For example, in the case of
a truncated tetrahedron, which consists of regular triangles and regular hexagons,
as shown in Figure 3.3, we only consider three patterns of the start and next face
pairs: (a) a triangle and a hexagon, (b) a hexagon and a triangle, and (c) a hexagon
and a hexagon.

The partial edge unfolding obtained through rotational unfolding has overlapping
faces at both ends, and removing any additional faces would make it disconnected.
Thus, based on the definition in Section 2.3, this partial edge unfolding is a MOPE.
In other words, the rotational unfolding can be seen as an algorithm for enumerating
MOPEs in a polyhedron Q.
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(a) (b) (c)

Figure 3.3: Cases of the first two faces in the rotational unfolding. Starting with
face 0, 4, 6, or 7 results in pattern (a). Starting with face 2 and rolling to face 0
results in pattern (b), while rolling to face 1 leads to the pattern (c).

3.2 Overlapping unfolding for convex regular-faced
polyhedra

We implemented rotational unfolding in C++ and adapted it for convex regular-
faced polyhedra to find their overlapping edge unfoldings1. In the following sec-
tions, we present results concerning four types of convex regular-faced polyhedra
for which the existence of overlaps remained open. All computational experiments
were conducted on an Intel(R) Xeon(R) CPU E5-2643 v4 at 3.40 GHz with 512 GB
of memory, running CentOS 7.9. The numerical calculations were performed using
WolframScript 1.11.0 with a precision of 100 decimal places.

3.2.1 Archimedean and Johnson solids

We obtained the following theorems for Archimedean solids and Johnson solids:

Theorem 3.2 (Archimedean solids, see Table 3.1).

(a) An icosidodecahedron and a rhombitruncated cuboctahedron have no overlapping
edge unfoldings.

(b) A snub cube has overlapping edge unfoldings.

Theorem 3.3 (Johnson solids, see Table 3.2).

(a) 48 Johnson solids have no overlapping edge unfoldings.

(b) 44 Johnson solids have overlapping edge unfoldings.

1Image files and adjacency list data were sourced from https://mitani.cs.tsukuba.ac.jp/
polyhedron/data/polyhedron.zip.
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Table 3.1: Existence of overlapping edge unfoldings for Archimedean solids. The
timeout was set to 28,800 minutes (20 days).

Name Number of edge unfoldings [HS13]
Is there

an overlapping
edge unfolding?

Number of
nonisomorphic

MOPEs

Truncated tetrahedron 6,000 No [Hir15] -
Cuboctahedron 331,776 No [Hir15] -

Truncated hexahedron 32,400,000 No [Hir15] -
Truncated octahedron 101,154,816 No [Hir15] -
Rhombicuboctahedron 301,056,000,000 No [Hir15] -

Snub cube 89,904,012,853,248 Yes 3
Icosidodecahedron 208,971,104,256,000 No -

Rhombitruncated cuboctahedron 12,418,325,780,889,600 No -
Truncated dodecahedron 4,982,259,375,000,000,000 Yes [HS11] 1
Truncated icosahedron 375,291,866,372,898,816,000 Yes [HS11] 2

Rhombicosidodecahedron 201,550,864,919,150,779,950,956,544,000 Yes [HS11] Timeout
Snub dodecahedron 438,201,295,386,966,498,858,139,607,040,000,000 Yes [CFG91] Timeout

Rhombitruncated icosidodecahedron 21,789,262,703,685,125,511,464,767,107,171,876,864,000 Yes [HS11] Timeout

Figure 3.4: Another type of MOPE we found in a truncated icosahedron. The
right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

Our algorithm enumerates the number of nonisomorphic MOPEs for three types
of Archimedean solids. For the truncated dodecahedron, it was known that a type of
MOPE shown in Figure 1.3 (a) exists, but we found that no other types of MOPEs
exist. For the truncated icosahedron, it was known that a type of MOPE shown in
Figure 1.3 (b) exists, and we found that another type of MOPE, shown in Figure 3.4.
For the snub cube, we found three types of MOPEs, as shown in Figure 3.5. In the
snub cube, all types of MOPEs have two vertices of faces in touch. We compared
the running times of two methods in rotational unfolding to examine the effect of
pruning: one that simply enumerates all paths between two faces and another that
applies pruning methods. The results are shown in Table 3.3.

For the Johnson solids we enumerated the nonisomorphic MOPEs for 29 types
as shown in Appendix A.1. We also found edge unfoldings with two vertices of faces
in touch, two edges of faces in touch, or a vertex of one face and an edge of another
face in touch in Johnson solids. For example, in J66 (Figure A.27), (5), (8), and (12)
have two vertices of faces in touch, (10) has two edges of faces in touch, and (2) and
(3) have a vertex of one face and an edge of another face in touch. For an analytical
verification of cases with exactly two vertices of faces in touch and other types
of boundary-boundary in touch, refer to Appendix B. Furthermore, for Johnson
solids J68 to J82, MOPEs confirm that these Johnson solids have overlapping edge
unfoldings, as illustrated in Figure A.30 and Figure A.31 in Appendix A.1.
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Table 3.2: Existence of overlapping edge unfoldings for Johnson solids. The timeout
was set to 28,800 minutes (20 days).

Name
Number of

edge unfoldings [HS13]

Is there
an overlapping
edge unfolding?

Number of
nonisomorphic

MOPEs
Name

Number of
edge unfoldings [HS13]

Is there
an overlapping
edge unfolding?

Number of
nonisomorphic

MOPEs

J1 45 No - J47 9,324,488,558,669,593,960 Yes 217
J2 121 No - J48 2,670,159,599,304,760,178,000 Yes 715
J3 1,815 No - J49 672 No -
J4 24,000 No - J50 5,544 No -
J5 297,025 No - J51 42,336 No -
J6 78,250,050 No - J52 16,744 No -
J7 361 No - J53 153,816 No -
J8 3,509 No - J54 75,973 Yes 1
J9 30,976 No - J55 709,632 Yes 1
J10 27,216 No - J56 707,232 Yes 1
J11 403,202 No - J57 6,531,840 Yes 1
J12 75 No - J58 92,724,962 Yes 1
J13 1,805 No - J59 1,651,482,010 Yes 1
J14 1,728 No - J60 1,641,317,568 Yes 1
J15 31,500 No - J61 28,745,798,400 Yes 1
J16 508,805 No - J62 28,080 No -
J17 207,368 No - J63 1,734 No -
J18 1,609,152 No - J64 8,450 No -
J19 227,402,340 No - J65 1,245,456 No -
J20 29,821,320,745 Yes 4 J66 54,921,311,280 Yes 13
J21 8,223,103,375,490 Yes 9 J67 90,974,647,120,896 Yes 13
J22 37,158,912 No - J68 68,495,843,558,495,480,625,000 Yes Timeout
J23 15,482,880,000 No - J69 936,988,158,859,771,579,003,317,600 Yes Timeout
J24 5,996,600,870,820 Yes 6 J70 930,303,529,996,712,062,599,302,400 Yes Timeout
J25 1,702,422,879,696,000 Yes 24 J71 12,479,653,904,364,665,921,377,091,740,032 Yes Timeout
J26 1,176 No - J72 206,686,735,580,507,426,149,463,308,960 Yes Timeout
J27 324,900 No - J73 211,950,222,127,067,401,293,093,928,960 Yes Timeout
J28 29,859,840 No - J74 211,595,653,377,414,999,219,839,524,608 Yes Timeout
J29 30,950,832 No - J75 216,255,817,875,464,148,759,178,607,616 Yes Timeout
J30 2,518,646,460 No - J76 21,081,520,904,394,872,104,529,280 Yes Timeout
J31 2,652,552,060 No - J77 21,635,458,027,234,604,842,992,000 Yes Timeout
J32 699,537,024,120 Yes 2 J78 21,638,184,348,166,814,636,938,752 Yes Timeout
J33 745,208,449,920 Yes 2 J79 22,171,247,351,297,062,278,807,776 Yes Timeout
J34 193,003,269,869,040 Yes 1 J80 2,163,645,669,729,922,583,040 Yes Timeout
J35 301,896,210 No - J81 2,094,253,294,125,015,611,392 Yes Timeout
J36 302,400,000 No - J82 2,151,245,812,763,713,106,752 Yes Timeout
J37 301,988,758,680 No - J83 197,148,908,795,401,104 Yes 188
J38 270,745,016,304,350 Yes 4 J84 8,640 No -
J39 272,026,496,000,000 Yes 4 J85 1,291,795,320 No -
J40 75,378,202,163,880,700 Yes 32 J86 84,480 No -
J41 75,804,411,381,317,500 Yes 32 J87 652,846 No -
J42 20,969,865,292,417,385,400 Yes 74 J88 2,002,440 No -
J43 21,115,350,368,078,435,000 Yes 70 J89 32,373,600 No -
J44 5,295,528,588 Yes 4 J90 519,556,800 No -
J45 13,769,880,349,680 Yes 6 J91 870,912 No -
J46 32,543,644,773,848,180 Yes 13 J92 235,726,848 No -

3.2.2 Archimedean prisms

We obtained the following theorem for Archimedean prisms:

Theorem 3.4 (Archimedean prisms). Let n be a natural number and PR(n) be an
n-gonal Archimedean prism.

(a) If 3 ≤ n ≤ 23, PR(n) has no overlapping edge unfoldings.

(b) For n ≥ 24, there exists an overlapping edge unfolding in PR(n).

We demonstrate the case of no overlapping edge unfolding of Theorem 3.4 (a)
for every n ∈ {3, . . . , 23} of PR(n) using rotational unfolding.

Theorem 3.4 (b) can be proven by constructing an overlapping edge unfolding
for PR(n). Let FT and FB be the top and bottom faces of PR(n), respectively,
and f0, . . . , fn−1 be the sides, which are numbered counterclockwise viewing from
the top face FT . For i ∈ {0, . . . , n − 1}, let ti and bi be vertices on FT and FB

such that they share two faces fi and fi+1, where fn = f0. For n = 24, PR(n) has
an overlapping edge unfolding, as shown in Figure 3.6 (right), consisting of faces
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Figure 3.5: Three types of MOPEs in the snub cube. The edge unfolding can be
obtained by cutting each snub cube along the thick line.

Table 3.3: Comparison of the running time for rotational unfolding: simply enumer-
ating all paths between two faces (naive) and applying pruning methods (pruning).
The timeout was set to 3,000 minutes.

Name Number of edge unfoldings [HS13] Naive Pruning

Truncated tetrahedron 6,000 0m0.135s 0m0.021s
Cuboctahedron 331,776 0m0.225s 0m0.012s

Truncated hexahedron 32,400,000 0m0.652s 0m0.025s
Truncated octahedron 101,154,816 0m1.765s 0m0.049s
Rhombicuboctahedron 301,056,000,000 1m8.449s 0m1.026s

Snub cube 89,904,012,853,248 10m37.172 0m25.016s
Icosidodecahedron 208,971,104,256,000 15m56.042s 0m5.312s

Rhombitruncated cuboctahedron 12,418,325,780,889,600 1103m0.526s 6m8.364s
Truncated dodecahedron 4,982,259,375,000,000,000 2805m33.762s 10m47.283s
Truncated icosahedron 375,291,866,372,898,816,000 Timeout 2381m20.515s

Rhombicosidodecahedron 201,550,864,919,150,779,950,956,544,000 Timeout Timeout
Snub dodecahedron 438,201,295,386,966,498,858,139,607,040,000,000 Timeout Timeout

Rhombitruncated icosidodecahedron 21,789,262,703,685,125,511,464,767,107,171,876,864,000 Timeout Timeout

{FB, f0, FT , f3, f2, f1} obtained by cutting along the thick line of PR(n), as shown in
Figure 3.6 (left). For 25 ≤ n ≤ 28, PR(n) has an overlapping edge unfolding similar
to PR(24), as shown in Figure A.32 of Appendix A.2.

It remains to be shown that an overlapping edge unfolding of PR(n) exists
for n ≥ 29. To prove this, we focus on the edge unfolding that consists of faces
{FB, f0, FT , f2, f1}, which overlaps as shown in Figure 3.7 (right), when cut along
the thick line of PR(n) in Figure 3.7 (left). Therefore, we can obtain the following
lemma.

Lemma 3.5. For n ≥ 29, if we cut the edges (t0, t1), (t0, b0), (b0, b1), and (b1, b2)
and do not cut (tn−1, t0), (bn−1, b0), (t1, b1), and (t1, t2) of PR(n), any edge unfolding
is overlapping.

Figure 3.8 shows a part of the edge unfolding consisting of {FB, f0, FT , f2, f1},
and an enlarged and simplified version shown in Figure A.33 of Appendix A.2.
We define tTi and bBi for i ∈ {0, . . . , n − 1} as vertices on FT and FB in the edge
unfolding such that they are ti and bi in PR(n), respectively. Let S be a subset of
faces {f0, . . . , fn−1}. The vertices ti and bi in PR(n) that are shared by S in the
edge unfolding are denoted as tSi and bSi , respectively. Here, we set bf10 and bf1,f21 as
(0, 0) and (0, 1) in the plane, respectively. We can obtain the following lemma.
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Figure 3.6: An overlapping edge unfolding in the 24-gonal Archimedean prism. The
right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

Figure 3.7: An overlapping edge unfolding in the 29-gonal Archimedean prism. The
right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

Lemma 3.6.

(i) Point bB0 exists in the third quadrant.

(ii) Point bB1 exists in the first quadrant.

(iii) Let p1 be an intersection point of the segment bB0 b
B
1 and the y-axis. The y-

coordinate of p1 is positive.

The y-coordinate of p1 is within (0,−1) to (0, 1) because the length of the line
segment bB0 b

B
1 is one if Lemma 3.6 (i) and (ii) are satisfied. And if the y-coordinate of

p1 is positive, the line segment bf10 bf1,f21 intersects the line segment bB0 b
B
1 . Therefore,

the faces f1 and FB overlap if Lemma 3.6 are satisfied.
We show that Lemma 3.6 is satisfied. We define the angle θ = 2π/n as the

exterior angle of the regular n-sided polygon. The range of θ is 0 < θ ≤ 2π/29
because n ≥ 29. We make the following claim. See the details of the proofs in
Appendix C.1.

Claim 3.7. The coordinates of bB0 and bB1 are (−1− sin θ+cos 2θ, 1− cos θ− sin 2θ)
and (−1− sin θ + cos 2θ + sin 3θ, 1− cos θ − sin 2θ + cos 3θ), respectively.

From Claim 3.7 and differential analysis, we can show Lemma 3.6 (i) - (iii). See
the details of the proofs in Appendix C.2.

With these established, Lemma 3.6 (i) - (iii) hold; that is, an overlapping edge
unfolding exists for PR(n), where n ≥ 29.
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Figure 3.8: Magnified image of overlapping areas in the edge unfolding of PR(n).

Figure 3.9: An overlapping edge unfolding in the 12-gonal Archimedean antiprism.
The right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

3.2.3 Archimedean antiprisms

We obtained the following theorem for Archimedean antiprisms:

Theorem 3.8 (Archimedean antiprisms). Let n be a natural number and PA(n) be
an n-gonal Archimedean antiprism.

(a) If 3 ≤ n ≤ 11, PA(n) has no overlapping edge unfoldings.

(b) For n ≥ 12, there exists an overlapping edge unfolding in PA(n).

We demonstrate the no overlapping edge unfolding of Theorem 3.8 (a) for every
n ∈ {3, . . . , 11} of PA(n) using rotational unfolding.

Theorem 3.8 (b) can be proven by constructing an overlapping edge unfolding
for PA(n). Let FT and FB be the top and bottom faces of PA(n), respectively, and
f0, . . . , f2n−1 be the sides, which are numbered counterclockwise viewing from the top
face FT . For i ∈ {0, . . . , n−1}, let ti and bi be vertices on FT and FB such that they
share three faces f2i, f2i+1, and f2i+2 and f2i−1, f2i, and f2i+1, where f−1 = f2n−1

and f2n = f0. For n = 12, PA(n) has an overlapping edge unfolding, as shown
in Figure 3.9 (right), consisting of faces {f3, FB, f5, f4, FT , f0, f1, f2} obtained by
cutting along the thick line of PA(n), as shown in Figure 3.9 (left). For 13 ≤ n ≤ 16,
PA(n) has an overlapping edge unfolding similar to PA(12), as shown in Figure A.34
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Figure 3.10: An overlapping edge unfolding in the 17-gonal Archimedean antiprism.
The right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

Figure 3.11: An overlapping edge unfolding in the 19-gonal Archimedean antiprism.
The right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

of Appendix A.3. For n ∈ {17, 18}, PA(n) has overlapping edge unfoldings consisting
of faces {FT , f0, f1, FB, f5, f4, f3, f2}, as shown in Figure 3.10 (left), obtained by
cutting along the thick line PA(n), as shown in Figure 3.10 (right).

It remains to be shown that an overlapping edge unfolding of PA(n) exists for
n ≥ 19. To prove this, we focus on the edge unfolding that consists of faces
{FB, f1, f2, FT , f4, f3} which overlaps as shown in Figure 3.11 (right), when cut along
the thick line of PA(n) in Figure 3.11 (left). herefore, we can obtain the following
lemma.

Lemma 3.9. For n ≥ 19, if we cut the edges (t1, b1) and (b1, b2) and do not cut
the edges (t0, t1), (b0, b1), (t0, b1), (t1, t2), and (t1, b2) of PA(n), any edge unfolding
is overlapping.

Figure 3.12 shows a part of edge unfolding consisting of {FB, f1, f2, FT , f4, f3},
and an enlarged and simplified version shown in Figure A.35 of Appendix A.3. We
define tTi and bBi for i ∈ {0 . . . n− 1} as vertices on FT and FB in the edge unfolding
such that they are ti and bi in PA(n), respectively. Let S be a subset of faces
{f0, . . . , f2n−1}. The vertices ti and bi are vertices in PA(n) that are shared by S in
the edge unfolding are denoted as tSi and bSi , respectively. Here, we set bf31 and tT1
as (0, 0) and (−1, 0) in the plane, respectively. We can obtain the following lemma.

Lemma 3.10.

(i) Point bB1 exists in the third quadrant.

(ii) The y-coordinate of point bB2 is positive.
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(a) The case for 19 ≤ n ≤ 24

(b) The case for n ≥ 25

Figure 3.12: Magnified image of overlapping areas in the edge unfolding of PA(n).

(iii) Let p1 be an intersection point of the segment bB1 b
B
2 and the x-axis. The x-

coordinate of point p1 is greater than −1 and less than 0.

Face f3 is a triangle such that the bottom is (−1, 0) to (0, 0). From Lemma 3.10
(i) and (ii), there exists an intersection point p1 of the segment bB1 b

B
2 and the x-axis.

Moreover, if p1 is within (−1, 0) to (0, 0), the line segment bB1 b
B
2 intersects f3; that

is, f3 and FB overlap.
We define the angle θ = 2π/n as the exterior angle of the regular n-sided polygon.

The range of θ is 0 < θ ≤ 2π/19 because n ≥ 19. We obtain the following claim.
See the details of the proofs in Appendix C.3.

Claim 3.11. The coordinates of bB1 and bB2 are (−1 + cos θ,− sin θ), (−1 + cos θ +
sin (2θ − π/6),− sin θ + cos (2θ − π/6)), respectively. The x-coordinate of p1 is
(cos (π/6− θ)/ cos (2θ − π/6))− 1.

From Claim 3.11 and differential analysis, we can show Lemma 3.10 (i) - (iii).
See the details of the proofs in Appendix C.4.
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With these established, Lemma 3.10 (i) - (iii) hold; that is, an overlapping edge
unfolding exists for PA(n), where n ≥ 19.

3.3 Overlapping lattice unfolding for cuboid

Here, we present the following theorem for cuboids:

Theorem 3.12.

• Both the (1, 1, 1)-cuboid and (
√
2,
√
2,
√
2)-cuboid have no overlapping lattice

unfolding.

• The (1, 1, 2)-cuboid has neither faces-in-touch lattice unfolding nor edges-in-
touch lattice unfolding, but it has a vertices-in-touch lattice unfolding.

• Both the (1, 2, 2)-cuboid and (2, 2, 2)-cuboid have no faces-in-touch lattice un-
folding, but they have edges-in-touch lattice unfoldings and vertices-in-touch
lattice unfoldings.

• Any other type of cuboids have faces-in-touch lattice unfoldings, edges-in-touch
lattice unfoldings, and vertices-in-touch lattice unfoldings.

Hereafter, we explain the non-existence side of Theorem 3.12 in Section 3.3.1
and the existence side in Section 3.3.2.

3.3.1 Method to check for the non-existence of overlapping
lattice unfoldings

First, we show a method to check the non-existence of overlapping lattice unfoldings
through a computational experiment using rotational unfolding. However, using
rotational unfolding directly for lattice unfolding is inefficient for the search. In this
section, we present the method of extending rotational unfolding to lattice unfolding
and the results of computational experiments.

In the rotational unfolding for polyhedron Q, we use the dual graph GD. There-
fore, since we are considering the lattice unfolding of a cuboid C, we consider the
dual graph GDC of GC , where cuboid C is viewed as a graph. In rotational unfolding,
we efficiently search for overlaps by enumerating MOPEs in the polyhedron Q. Sim-
ilarly, by applying rotational unfolding to cuboids, we can enumerate overlapping
partial lattice unfoldings. However, among these overlapping partial lattice unfold-
ings, there are non-minimal overlapping partial lattice unfoldings (non-MOPLs), as
shown in Figure 3.13. Including partial lattice unfoldings that are non-MOPLs re-
duces the efficiency of checking for the existence of overlapping lattice unfoldings.
To address this, we introduce the following characteristics to provide information
about the “direction of rolling when viewed from one step before”:

R: Roll to the right from one step before.

C: Roll straight from one step before.
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…

…
…

…

(a) Non-MOPL

…
…

(b) MOPL

Figure 3.13: Examples of partial lattice unfoldings obtained using rotational unfold-
ing directly. Removing the plaid faces in (a) results in (b)’s MOPL.

…

(a) “CCRCL”

…

(b) “CLRRCRLLC”

Figure 3.14: Examples of strings corresponding to partial lattice unfoldings.

L: Roll to the left from one step before.

Therefore, the partial lattice unfolding obtained directly using the rotational unfold-
ing can be represented as a string (see example in Figure 3.14). In the rotational
unfolding, the first step is to roll straight ahead without loss of generality, so the
string corresponding to the partial lattice unfolding obtained in the first step is “C.”
Here, we can show the following lemma:

Lemma 3.13. When the strings corresponding to the partial lattice unfoldings in-
clude “RR” or “LL”, they are non-MOPLs.

Proof. In the second step of the rotational unfolding, we have three cases: (1)
rolling to the right (“CR”; Figure 3.15 (a)), (2) rolling straight (“CC”; Figure 3.15
(b)), and (3) rolling to the left (“CL”; Figure 3.15 (c)). If we repeat the action of
rolling right, or “RR”, twice after the second step, we get (1) “CRRR” (Figure 3.15
(d)), (2) “CCRR” (Figure 3.15 (e)), and (3) “CLRR” (Figure 3.15 (f)). For case
(1), this situation cannot occur because we have already used the face as part of
the constructed partial edge unfolding. For cases (2) and (3) (Figure 3.15 (e) and
Figure 3.15 (f)), these partial lattice unfoldings are non-MOPLs, and removing
the plaid faces results in MOPLs Figure 3.15 (a) and Figure 3.15 (b). The same
statement applies even if “RR” appears not only in the first four steps but also at
any point during the rolling process. Similarly, the same can be said for “LL.”

Therefore, if “RR” or “LL” appears during rolling, it is a non-MOPL; there is
no need to continue rolling, thereby pruning the search.
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(a) “CR” (b) “CC” (c) “CL”

(d) “CRRR” (e) “CCRR” (f) “CLRR”

Figure 3.15: Examples of partial lattice unfoldings obtained through two rotations
and a double right rotation. (a)-(c): Lattice unfoldings from two rotations. (d)-(f):
Lattice unfoldings with an additional double right roll after two rotations.

When a cuboid has an overlapping lattice unfolding, we can determine how they
overlap using the following claim:

Claim 3.14. In rotational unfolding, compute the center coordinates of the face at
one endpoint, assuming its center coordinates are (0, 0) (see Figure 3.16 (a)). Then,
while rolling the cuboid sequentially, compute the center coordinates of the face at
the other endpoint in the partial lattice unfolding. We can determine the type of
unfolding based on the coordinates of the center of the face at the other endpoint:

• If the coordinates are (0, 0), it is a faces-in-touch unfolding (a plaid face in
Figure 3.16 (b)).

• If the coordinates are (0, 1), (−1, 0), or (0,−1), it is an edges-in-touching
unfolding (polka dot faces in Figure 3.16 (b)).

• If the coordinates are (1, 1), (1,−1), (−1,−1), or (−1, 1), it is a vertices-in-
touch unfolding (striped faces in Figure 3.16 (b)).

We implemented the method of extending rotational unfolding to lattice unfold-
ing and obtained the non-existence results shown in Theorem 3.12. Table 3.4 to
3.6 show the running times of computational experiments for each type of lattice
cuboid. These experiment results include verifying the previous results [Hea18]
and [Sug18].

3.3.2 Proving the existence of overlapping lattice unfoldings

Hereafter, we prove the existence side of the statements of Theorem 3.12 by showing
specific overlapping unfoldings.
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… …

…

(a) The coordinates of the
center of each face

… …

…

(b) The coordinates of the center of
the face at the other endpoint

Figure 3.16: A method for checking overlap in rotational unfoldings and identifying
their types.

Table 3.4: The running time to check the non-existence of faces-in-touch unfoldings.

Lattice cuboid |F | |E| |V | Time

(1, 1, 1)-cuboid 6 12 8 0m0.056s
(1, 1, 2)-cuboid 10 20 12 0m0.106s
(1, 2, 2)-cuboid 16 32 18 0m1.187s
(2, 2, 2)-cuboid 24 48 26 0m50.757s

(
√
2,
√
2,
√
2)-cuboid 12 24 14 0m1.009s

Table 3.5: The running time to check the non-existence of edges-in-touch unfoldings.

Lattice cuboid |F | |E| |V | Time

(1, 1, 1)-cuboid 6 12 8 0m0.051s
(1, 1, 2)-cuboid 10 20 12 0m0.132s

(
√
2,
√
2,
√
2)-cuboid 12 24 14 0m1.021s

Table 3.6: The running time to check the non-existence of vertices-in-touch unfold-
ings.

Lattice cuboid |F | |E| |V | Time

(1, 1, 1)-cuboid 6 12 8 0m0.053s
(
√
2,
√
2,
√
2)-cuboid 12 24 14 0m1.098s
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(a) A (1, 1, 2)-cuboid (b) A (1, 2, 2)-cuboid

(c) A (1, 2, 2)-cuboid (d) A (2, 2, 2)-cuboid

(e) A (2, 2, 2)-cuboid (f) A (
√
2,
√
2, 2

√
2)-cuboid

Figure 3.17: Overlapping partial lattice unfoldings for L = 1 and
√
2. Cut along

the red lines on the left cuboid to obtain the right unfoldings.

Case of L = 1
From Theorems 1.3 and 1.4, faces-in-touch, edges-in-touch, and vertices-in-touch

unfoldings exist for the (x, y, z)-cuboid, where z ≥ 3. For the remaining cases for
the case of L = 1, we provide specific examples of unfoldings as follows:

Lemma 3.15.

• The (1, 1, 2)-cuboid has a vertices-in-touch unfolding (Figure 3.17 (a)).

• The (1, 2, 2)-cuboid has both an edges-in-touch unfolding (Figure 3.17 (b)) and
a vertices-in-touch unfolding (Figure 3.17 (c)).

• The (2, 2, 2)-cuboid has both an edges-in-touch unfolding (Figure 3.17 (d)) and
a vertices-in-touch unfolding (Figure 3.17 (e)).

Case of L =
√
2, L =

√
5, and L =

√
10

From the inclusion relationship between the edges-in-touch and vertices-in-touch
unfolding, we have only to show the existence of the faces-in-touch unfolding.
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Figure 3.18: Overlapping partial lattice unfolding QL.

Figure 3.19: Embedding of QL in the three front-facing faces of the (
√
2,
√
2, 2

√
2)-

cuboid.

A faces-in-touch unfolding exist for the (
√
2,
√
2, 2

√
2)-cuboid (Figure 3.17 (f)).

From now on, we call this partial lattice unfolding as QL (Figure 3.18). Moreover,
the (

√
2,
√
2, 2

√
2)-cuboid can be unfolded to include the partial lattice unfolding QL

because QL can be embedded in the three faces in front of the (
√
2,
√
2, 2

√
2)-cuboid

(see Figure 3.19). Note that we have to fold the three triangular faces: a plaid face
in the positive y-axis direction, a polka dot face in the positive direction of the x-
axis direction, and a striped face in the positive direction of the x-axis direction.
This embedding method can also be applied to the (x

√
2, y

√
2, z

√
2)-cuboid, where

x, y, z ≥ 2, as shown in Figure 3.20.
The same embedding can be performed for cases where L =

√
5 and L =

√
10

(see Figure 3.21 (a) and (b)).

Case of L ≥
√
13

The partial lattice unfolding QL can be embedded in the (
√
13,

√
13,

√
13)-

…
…

…

…
…

……

… …
…

…

Figure 3.20: Embedding of QL in the (x
√
2, y

√
2, z

√
2)-cuboid, with z ≥ 2.
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cuboid, as shown in Figure 3.21 (c). Here, we present the following lemma:

Lemma 3.16. The partial lattice unfolding QL can be embedded in the (L,L, L)-
cuboid, where L ≥

√
13.

Proof. Consider the three unit squares with vertex v in common (Figure 3.21 (d)).
The three-unit squares enclosed in blue in Figure 3.18 can be embedded in this
point. Let S be the side face of a cone with the length of axis

√
13 and a central

angle of 270◦ (Figure 3.22). Hereafter, S is called the cone. Since the central angle
of the cone S is 270◦, the three unit squares enclosed in blue in Figure 3.18 can
be embedded with vertex v coinciding. Additionally, due to the Euclidean distance
between the point v and the furthest point w in Figure 3.18 being

√
22 + 32 =

√
13,

the remaining faces, except for the three faces enclosed in blue, can be embedded as
shown in Figure 3.22 (right). The cone S can be embedded in the three front faces
of a (L,L, L)-cuboid where L ≥

√
13, as shown in Figure 3.23. From the fact that

the cone S can be embedded in a (L,L, L)-cuboid and that QL can be embedded
on top of the cone S, we can concluded that QL can be embedded in the three front
faces of a (L,L, L)-cuboid.

From this lemma, a faces-in-touch unfolding exists for the (xL, yL, zL)-cuboid
in any of the x, y, z, where L ≥

√
13. The same can be said for edges-in-touch and

vertices-in-touch unfolding due to the inclusion relationship.

3.4 Summary and discussion on overlapping un-
foldings

In this chapter, we showed results on the existence of overlapping unfoldings in
edge unfoldings of convex regular-faced polyhedra, as well as in lattice unfoldings of
cuboids.

First, we proposed a rotational unfolding algorithm to determine whether a given
polyhedron has overlapping edge unfoldings. The key idea of this algorithm is to
focus on paths instead of spanning trees of edge unfoldings. Additionally, by using
pruning methods according to the symmetry and distances, the search becomes more
efficient. Applying this algorithm allowed us to confirm the existence of overlapping
edge unfoldings for all Archimedean solids and Johnson solids. In addition, by com-
bining this algorithm with analytical techniques, we clarified the conditions under
which Archimedean prisms and antiprisms admit overlapping edge unfoldings.

Next, we applied a similar idea to the lattice unfoldings of cuboids. By extending
the rotational unfolding, we confirmed that certain cuboids of specific sizes do not
have particular types of overlapping lattice unfoldings. Furthermore, by using an em-
bedding technique for specific lattice unfoldings, we showed that cuboids exceeding
certain sizes have faces-in-touch, edges-in-touch, and vertices-in-touch unfoldings.

On the other hand, this study only considered polyhedra where all edges have
the same length. As a future direction, it would be interesting to explore cases where
some edges have different lengths.
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(a) The (
√
5,
√
5,
√
5)-cuboid (b) The (

√
10,

√
10,

√
10)-cuboid

(c) The (
√
13,

√
13,

√
13)-cuboid (d) The (L,L, L)-cuboid (L ≥

√
13)

Figure 3.21: Embedding of QL in each cuboid.

Figure 3.22: The side face of a cone with an axis length of
√
13 and a central angle

of 270◦. Rounding the left fan shape yields the solid on the right, where QL can be
embedded.

Figure 3.23: Embedding of the cone S in the three front-facing faces of the (L,L, L)-
cuboid, where L ≥

√
13.
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(a) Lattice
tehrahedron

(b) Lattice
octahedron

(c) Lattice
icosahedron

Figure 3.24: Examples of Platonic solids formed from a triangular lattice.

For example, as shown in Figure 1.2, if the height of a regular n-gonal prism
is increased or decreased from one, overlapping unfoldings may exist even when
n ≤ 24. From this observation, the following open problem can be considered:

Open problem 3.17. Consider a regular n-gonal prism with height h, where the
top and bottom faces are regular n-gons. Determine the values of n and h for which
the prism has an overlapping edge unfolding.

Similarly, the following open problem can be posed for antiprisms:

Open problem 3.18. Consider a regular m-gonal antiprism with height h, where
the top and bottom faces are regular m-gons. Determine the values of m and h for
which the antiprism has an overlapping edge unfolding.

In this study, we focused on cutting cuboids along a square lattice. However, as
shown in Figure 3.24, we can also consider unfoldings of lattice tetrahedra, lattice
octahedra, and lattice icosahedra along a triangular lattice. According to [KSU24],
a tetrahedron never has a faces-in-touch unfolding, regardless of how it is unfolded.
Thus, the contrast between unfoldings of tetrahedra on a triangular lattice and
cuboids on a square lattice is interesting.



Chapter 4

The number of non-overlapping
unfoldings in convex polyhedra

4.1 Counting algorithm for the number of non-
overlapping unfoldings

In this section, we describe an algorithm for counting the number of non-overlapping
unfoldings of a given polyhedron. From Lemmas 2.1 and 2.3, the number of unfold-
ings can be obtained by counting the number of cutting lines. The number of cutting
trees can be counted by constructing a ZDD ZT [KIIM17]. However, for polyhedra
where unfolding along specific cutting lines results in overlapping unfoldings, ZT
includes these overlapping unfoldings. To efficiently remove the overlapping unfold-
ings, we use the subsetting method, an operation over ZDDs [IM13]. The subsetting
method constructs a new ZDD ZN by extracting the family of sets that satisfy the
constraint C from ZDD Z.

We now present a method for removing overlapping unfoldings using the subset-
ting method. Hereafter, we call both MOPEs and MOPLs collectively as minimal
overlapping partial unfoldings (MOPUs). As described in Section 3.1, MOPUs can
be enumerated using rotational unfolding. For a (partial) unfolding U , let NC[U ]
be the set of edges that are not cut when unfolding the polyhedron. The following
lemma holds for any MOPU Mi (0 ≤ i ≤ k), where k is the number of MOPUs.

Lemma 4.1. If an unfolding U satisfies NC[Mi] ⊆ NC[U ], then U is an overlapping
unfolding.

Proof. Let the sequence of faces in MOPU Mi be f1, f2, . . . , fℓ, and let ej be the
edge shared between each pair of adjacent faces fj and fj+1 (where the faces f1 and fℓ
overlap). Since NC[Mi] represents the set of uncut edges in the partial unfolding Mi,
we can write NC[Mi] = {e1, e2, . . . , eℓ−1}. On the other hand, from the condition
NC[Mi] ⊆ NC[U ], it follows that the set e1, e2, . . . , eℓ−1 must be included in the
unfolding U . Therefore, the sequence of faces f1, f2, . . . , fℓ appears in U , indicating
that U has overlaps.

From Lemma 4.1, removing the family of sets Ui (which represents unfoldings
containing the MOPU Mi) from the ZDD ZT yields a ZDD that represents only
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non-overlapping unfoldings that do not include the structure of Mi. On the other
hand, to construct the family of sets Ui representing unfoldings that include MOPU
Mi, we need a ZDD representing the family of spanning trees that contain NC[Mi].
However, by applying the following lemma, we can create a simpler ZDD.

Lemma 4.2. Given the family of sets ZT representing all unfoldings, the following
conditions are equivalent:

(1) The family of sets obtained by removing the unfoldings that include MOPU Mi

from ZT .

(2) The family of sets obtained by removing the family Fi = NC[Mi] ∪ E ′ | E ′ ⊆ E \NC[Mi],
which contains all subsets that include NC[Mi], from ZT .

Proof. From the condition, we know that Ui ⊆ Fi. Now, if we define Ni = Fi \ Ui,
then Ni contains no sets that represent unfoldings, meaning Ni ̸⊆ ZT . Therefore,
we have the following equivalence:

ZT \ Fi = ZT \ (Ni ∪ Ui) = ZT \ Ui,

which completes the proof.

Therefore, we can construct a ZDD that represents non-overlapping unfoldings
by following these steps:

Step 1. Construct the ZDD ZT that represents all possible unfoldings.

Step 2. For each i (0 ≤ i ≤ k), construct a ZDD Fi representing the family of all
sets containing every element of NC[Mi].

Step 3. Apply the subsetting method on ZT using the constraints from each Fi, to
construct a ZDD ZN that excludes MOPUs M1 through Mk.

4.2 Computational experiments on counting nonover-
lapping unfoldings

Here, we present the results of applying the algorithm for counting non-overlapping
unfoldings to the edge unfoldings of convex regular-faced polyhedra and the lattice
unfoldings of cuboids. We used the TdZdd library1 to construct the ZDD ZT , which
represents all unfoldings, the ZDD Fi, which represents the family of sets contain-
ing all elements of NC[Mi], and applied the subsetting method. The experiments
were conducted under the same conditions as described in Section 3.2. The rota-
tional unfolding method was used to enumerate MOPUs for the convex regular-faced
polyhedra, Johnson solids, Archimedean (anti)prisms, and lattice cuboids.

1https://github.com/kunisura/TdZdd



CHAPTER 4. THE NUMBER OF NON-OVERLAPPING UNFOLDINGS IN
CONVEX POLYHEDRA 37

Figure 4.1: The percentage of non-overlapping edge unfoldings in Archimedean
prisms.

4.2.1 The number of non-overlapping edge unfoldings for
convex regular-faced polyhedra

Tables 4.1 to 4.4 show the results of counting the number of non-overlapping edge
unfoldings and the percentage of non-overlapping unfoldings among all edge unfold-
ings, for Archimedean solids, Johnson solids, Archimedean prisms, and Archimedean
antiprisms, respectively. Figures 4.1 and 4.2 show line graphs with the values
of n for Archimedean n-gonal prisms and the values of m for Archimedean m-gonal
antiprisms on the horizontal axis, and the percentage of non-overlapping edge un-
foldings on the vertical axis.

From the results of these experiments, we can find the following. First, let’s com-
pare the truncated icosahedron and the truncated dodecahedron in Archimedean
solids (Table 4.1). Both polyhedra have the same number of vertices, edges, and
faces, the truncated icosahedron has more MOPUs. However, the truncated dodec-
ahedron has a lower percentage of non-overlapping edge unfoldings. The MOPUs
in the truncated icosahedron consist of eight or nine faces (Figure 1.3 (b) and Fig-
ure 3.4). On the other hand, the MOPU in the truncated dodecahedron includes
only 4 faces (Figure 1.3 (a)).

Next, for Archimedean n-gonal prisms, there is an approximate 26% decrease in
the percentage of non-overlapping edge unfoldings when n increases from 28 to 29.
For n = 28, there are three types of MOPUs, consisting of six, seven, or eight faces
(Figure 4.3). For n = 29, there are five types of MOPUs, three of which are the
same as for n = 28, and the other two consist of four faces (Figure 4.4).

Similarly, for Archimedean m-gonal antiprisms, there is an approximate 70%
decrease in the percentage of non-overlapping edge unfoldings when m increases
from 17 to 18. For m = 17, there are two types of MOPUs, both consisting of eight
faces (Figure 4.5). For m = 18, there are five types of MOPUs, two of which are
the same as for m = 17, and the other three consist of six faces (Figure 4.6).
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Table 4.1: The number and percentage of non-overlapping edge unfoldings for
Archimedean solids.

Archimedean solids |V | |E| |F | #(MOPU) #(Edge unfolding) #

(
Non-overlapping
edge unfolding

)
Pct.(%)

Snub cube 24 60 38 72 89,904,012,853,248 85,967,688,920,076 95.62
Truncated dodecahedron 60 90 32 120 4,982,259,375,000,000,000 1,173,681,002,295,455,040 23.56
Truncated icosahedron 60 90 32 240 375,291,866,372,898,816,000 371,723,160,733,469,233,260 99.05

Rhombicosidodecahedron 60 120 62 - 201,550,864,919,150,779,950,956,544,000 - -
Snub dodecahedron 60 150 92 - 438,201,295,386,966,498,858,139,607,040,000,000 - -

Rhombitruncated icosidodecahedron 120 180 62 - 21,789,262,703,685,125,511,464,767,107,171,876,864,000 - -

Table 4.2: The number and percentage of non-overlapping edge unfoldings for John-
son solids. The timeout was set to 28,800 minutes (20 days).

Johnson solids |V | |E| |F | #(MOPU) #(Edge unfolding) #

(
Non-overlapping
edge unfolding

)
Pct.(%)

J20 25 45 22 40 29,821,320,745 27,158,087,415 91.07
J21 30 55 27 90 8,223,103,375,490 6,297,186,667,720 76.58
J24 25 55 6 60 5,996,600,870,820 5,492,624,228,190 91.60
J25 30 65 24 240 1,702,422,879,696,000 947,565,833,513,130 55.66
J32 25 50 27 20 699,537,024,120 699,433,603,320 99.99
J33 25 50 27 20 745,208,449,920 745,105,029,120 99.99
J34 30 60 32 20 193,003,269,869,040 190,653,702,525,040 98.78
J38 30 60 32 80 270,745,016,304,350 214,085,775,357,270 79.07
J39 30 60 32 80 272,026,496,000,000 215,087,798,524,180 79.07
J40 35 70 37 320 75,378,202,163,880,700 45,541,858,035,543,690 60.42
J41 35 70 37 320 75,804,411,381,317,500 45,774,968,967,924,850 60.39
J42 40 80 42 1,480 20,969,865,292,417,385,400 8,873,953,322,249,583,330 42.32
J43 40 80 42 1,400 21,115,350,368,078,435,000 8,884,490,741,507,534,860 42.08
J44 18 42 26 24 5,295,528,588 5,231,781,954 98.80
J45 24 56 34 48 13,769,880,349,680 13,386,219,088,644 97.21
J46 30 70 42 170 32,543,644,773,848,180 25,553,553,814,333,235 78.52
J47 35 80 47 1,175 9,324,488,558,669,593,960 4,135,578,144,180,583,965 44.35
J48 40 90 52 7,290 2,670,159,599,304,760,178,000 - -
J54 13 22 11 4 75,973 75,749 99.71
J55 14 26 14 8 709,632 705,144 99.37
J56 14 26 14 8 707,232 702,520 99.33
J57 15 30 17 12 6,531,840 6,457,860 98.87
J58 21 35 16 10 92,724,962 92,219,782 99.46
J59 22 40 20 20 1,651,482,010 1,632,941,030 98.88
J60 22 40 20 20 1,641,317,568 1,621,738,522 98.81
J61 23 45 24 30 28,745,798,400 28,183,512,978 98.04
J66 28 48 22 104 54,921,311,280 39,055,563,000 71.11
J67 32 60 30 208 90,974,647,120,896 43,437,626,181,464 47.75
J68 65 105 42 - 68,495,843,558,495,480,625,000 - -
J69 70 120 52 - 936,988,158,859,771,579,003,317,600 - -
J70 70 120 52 - 930,303,529,996,712,062,599,302,400 - -
J71 75 135 62 - 12,479,653,904,364,665,921,377,091,740,032 - -
J72 60 120 62 - 206,686,735,580,507,426,149,463,308,960 - -
J73 60 120 62 - 211,950,222,127,067,401,293,093,928,960 - -
J74 60 120 62 - 211,595,653,377,414,999,219,839,524,608 - -
J75 60 120 62 - 216,255,817,875,464,148,759,178,607,616 - -
J76 55 105 52 - 21,081,520,904,394,872,104,529,280 - -
J77 55 105 52 - 21,635,458,027,234,604,842,992,000 - -
J78 55 105 52 - 21,638,184,348,166,814,636,938,752 - -
J79 55 105 52 - 22,171,247,351,297,062,278,807,776 - -
J80 50 90 42 - 2,163,645,669,729,922,583,040 - -
J81 50 90 42 - 2,094,253,294,125,015,611,392 - -
J82 50 90 42 - 2,151,245,812,763,713,106,752 - -
J83 45 75 32 1,260 197,148,908,795,401,104 143,844,293,105,396,598 72,96
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Table 4.3: The number and percentage of non-overlapping edge unfoldings for
Archimedean prisms.

n-prisms |V | |E| |F | #(MOPU) #(Edge unfolding) #(Non-overlapping edge unfolding) Pct.(%)

24-prism 48 72 26 96 639,620,518,118,400 611,750,144,604,960 95.64
25-prism 50 75 27 100 2,486,558,615,814,025 2,378,211,063,753,525 95.64
26-prism 52 78 28 208 9,651,161,613,824,796 9,120,749,762,911,540 94.50
27-prism 54 81 29 216 37,403,957,244,654,675 35,348,297,730,550,335 94.50
28-prism 56 84 30 336 144,763,597,316,784,768 136,369,030,045,792,768 94.20
29-prism 58 87 31 580 559,560,282,425,278,229 377,763,966,359,384,333 67.51
30-prism 60 90 32 720 2,160,318,004,043,512,500 1,457,228,998,699,944,660 67.45
31-prism 62 93 33 744 8,331,163,769,982,715,231 5,619,734,416,791,278,823 67.45
32-prism 64 96 34 768 32,095,304,749,163,937,792 21,649,687,090,073,296,384 67.45
33-prism 66 99 35 792 123,524,473,883,545,449,825 83,322,661,319,000,341,161 67.45
34-prism 68 102 36 952 474,969,297,739,230,927,564 320,315,730,957,505,974,740 67.43
35-prism 70 105 37 1,120 1,824,745,126,233,358,110,635 1,224,788,877,353,311,603,655 67.12
36-prism 72 108 38 1,440 7,004,614,136,879,907,849,600 4,397,626,384,555,854,813,048 62.78
37-prism 74 111 39 1,776 26,867,730,730,869,118,775,917 16,841,247,868,506,593,664,113 62.68
38-prism 76 114 40 2,128 102,981,783,095,242,242,871,908 64,245,596,838,412,691,619,868 62.39
39-prism 78 117 41 2,496 394,447,279,575,099,709,694,775 245,972,761,433,859,004,882,155 62.36
40-prism 80 120 42 2,880 1,509,843,372,596,510,348,221,440 898,435,929,860,914,751,335,120 59.51
41-prism 82 123 43 3,116 5,775,682,482,451,356,835,464,761 3,436,774,701,162,733,316,551,373 59.50
42-prism 84 126 44 3,360 22,080,875,606,379,223,850,418,300 13,138,720,470,258,404,605,154,004 59.50
43-prism 86 129 45 3,784 84,369,019,868,106,350,841,057,283 49,292,119,107,345,418,821,464,335 58.42
44-prism 88 132 46 3,872 322,192,014,517,039,121,756,425,344 188,238,848,570,683,472,535,311,712 58.42
45-prism 90 135 47 3,960 1,229,765,080,878,981,092,880,253,125 718,483,241,070,056,103,676,962,705 58.42
46-prism 92 138 48 4,600 4,691,535,669,063,616,134,304,408,596 2,731,490,668,982,448,941,464,299,772 58.22
47-prism 94 141 49 5,076 17,889,680,992,955,476,025,801,057,807 10,224,003,439,425,442,252,695,897,017 57.15
48-prism 96 144 50 5,760 68,185,734,533,013,527,410,214,707,200 38,248,653,878,322,746,431,035,217,728 56.09
49-prism 98 147 51 6,664 259,774,138,662,539,598,798,853,632,529 142,720,047,356,681,793,679,714,971,049 54.94
50-prism 100 150 52 7,400 989,275,799,980,653,489,079,068,384,300 543,491,856,931,615,421,592,902,162,300 54.94
51-prism 102 153 53 7,752 3,765,868,099,190,667,877,509,098,288,475 2,068,859,848,320,328,618,349,489,286,879 54.94
52-prism 104 156 54 8,320 14,329,987,768,640,883,479,630,169,743,232 7,785,152,064,553,875,176,792,718,269,152 54.33
53-prism 106 159 55 8,904 54,508,708,624,877,734,355,711,282,194,973 29,613,250,778,119,135,586,129,657,023,707 54.33
54-prism 108 162 56 9,504 207,267,558,157,030,661,743,340,920,104,900 112,603,308,544,085,153,945,426,983,878,660 54.33
55-prism 110 165 57 10,120 787,857,744,058,382,475,503,456,540,986,855 425,875,823,447,530,794,507,732,415,080,195 54.05
56-prism 112 168 58 10,528 2,993,785,586,870,888,884,013,575,853,822,976 1,618,161,634,602,851,785,742,807,896,140,064 54.05
57-prism 114 171 59 10,944 11,372,477,058,547,594,072,637,405,171,464,425 6,144,514,101,474,823,054,337,696,869,965,123 54.03
58-prism 116 174 60 11,832 43,187,270,299,014,781,811,139,187,410,691,548 23,326,536,057,764,626,358,265,044,412,279,868 54.01
59-prism 118 177 61 12,744 163,956,002,289,170,289,778,245,356,488,769,459 88,555,357,584,032,953,873,552,819,154,790,741 54.01
60-prism 120 180 62 13,200 622,263,183,812,606,109,322,543,144,035,600,000 336,093,972,645,843,991,118,728,788,427,726,200 54.01
61-prism 122 183 63 14,396 2,361,023,114,629,354,318,988,404,829,601,017,461 1,153,365,956,554,130,834,065,584,588,770,576,537 48.85
62-prism 124 186 64 16,368 8,955,908,356,422,272,120,516,285,708,666,803,572 4,348,799,175,168,145,604,642,783,894,710,257,972 48.56
63-prism 126 189 65 17,136 33,963,000,256,261,477,807,141,098,532,312,144,575 16,471,862,499,365,318,605,626,349,567,981,855,893 48.50
64-prism 128 192 66 18,176 128,763,573,367,713,152,730,420,340,995,267,231,744 61,639,673,042,788,410,952,524,482,230,015,782,656 47.87
65-prism 130 195 67 18,720 488,060,826,065,747,443,959,964,835,220,252,662,465 233,636,801,403,179,720,910,996,973,994,228,508,855 47.87
66-prism 132 198 68 20,592 1,849,490,381,600,812,352,868,765,046,397,041,481,100 817,502,763,787,586,935,738,546,005,495,007,277,736 44.20
67-prism 134 201 69 21,172 7,006,973,770,308,488,575,706,974,966,641,609,633,547 3,096,713,246,303,000,494,444,990,880,370,568,593,743 44.19
68-prism 136 204 70 22,032 26,540,686,328,811,552,652,967,327,238,752,884,476,288 11,708,731,916,039,177,215,090,282,288,662,448,445,864 44.12
69-prism 138 207 71 23,184 100,507,824,991,680,378,240,003,224,046,430,181,592,525 44,338,599,512,338,312,952,849,566,215,445,778,264,511 44.11
70-prism 140 210 72 24,920 380,536,545,795,702,174,419,400,936,760,625,367,754,020 167,871,805,778,112,195,880,603,660,146,778,531,028,040 44.11
71-prism 142 213 73 26,128 1,440,470,033,375,554,519,683,181,104,192,641,139,543,191 596,980,870,760,277,516,010,511,111,996,499,418,929,177 41.44
72-prism 144 216 74 27,072 5,451,624,356,286,428,491,183,290,436,982,561,065,036,800 2,259,342,205,174,960,128,925,954,191,858,205,229,812,848 41.44
73-prism 146 219 75 28,616 20,628,318,790,905,383,592,284,267,890,431,520,768,956,313 8,469,990,610,622,325,272,650,976,154,778,586,597,435,431 41.06
74-prism 148 222 76 30,784 78,040,535,635,296,089,880,020,963,154,546,570,729,579,324 32,025,918,206,891,338,090,282,229,066,878,434,112,166,032 41.04
75-prism 150 225 77 32,100 295,187,071,662,987,687,788,834,025,600,273,039,376,171,875 121,137,505,659,975,371,817,128,867,759,297,593,082,123,025 41.04
76-prism 152 228 78 32,832 1,116,341,857,839,528,524,717,385,720,706,815,646,963,560,576 458,116,563,229,230,551,652,298,491,316,191,672,953,377,976 41.04
77-prism 154 231 79 34,496 4,221,063,539,073,913,152,987,956,742,195,551,512,005,068,837 1,732,009,405,771,917,690,525,457,067,579,534,620,683,321,047 41.03
78-prism 156 234 80 36,504 15,957,810,909,148,397,191,421,362,206,489,368,194,976,255,700 6,547,759,140,478,958,708,285,931,868,337,379,111,699,013,260 41.03
79-prism 158 237 81 38,236 60,318,891,360,909,981,287,537,928,032,449,270,480,051,118,959 23,966,231,512,837,756,482,429,326,605,666,856,951,504,314,983 39.73
80-prism 160 240 82 39,680 227,962,700,977,360,477,553,905,172,759,643,132,779,913,338,880 90,516,297,016,221,842,120,588,697,662,660,340,385,338,212,160 39.71
81-prism 162 243 83 40,500 861,402,987,056,617,421,633,941,618,402,777,587,646,191,546,225 341,995,341,132,294,891,175,058,139,558,428,542,441,464,210,039 39.70
82-prism 164 246 84 43,296 3,254,488,598,838,582,230,210,121,899,601,749,106,776,524,965,612 1,292,101,188,372,407,798,075,371,911,903,984,534,028,933,754,436 39.70
83-prism 166 249 85 45,152 12,294,037,740,147,518,091,413,729,519,608,692,068,340,007,484,603 4,880,994,415,535,251,356,999,865,904,928,194,228,585,240,087,219 39.70
84-prism 168 252 86 46,368 46,434,768,337,561,243,483,045,269,738,500,630,193,132,229,526,400 18,435,535,468,052,500,560,475,959,629,177,515,836,675,305,835,264 39.70
85-prism 170 255 87 48,620 175,359,973,181,486,662,638,962,060,133,459,799,581,503,709,666,685 68,136,242,011,705,283,282,291,593,247,449,255,410,135,074,971,535 38.86
86-prism 172 258 88 50,912 662,151,768,698,132,480,917,981,340,031,934,840,615,593,080,769,156 257,261,176,564,360,166,567,970,609,875,291,471,141,053,287,325,288 38.85
87-prism 174 261 89 53,940 2,499,918,741,278,642,349,615,482,066,241,598,681,934,395,700,879,175 890,564,328,098,014,416,825,940,792,706,208,682,651,794,408,576,921 35.62
88-prism 176 264 90 55,264 9,437,063,110,777,086,198,028,843,620,687,140,090,853,387,600,995,328 3,361,807,045,468,520,205,795,018,776,129,264,881,669,261,524,635,520 35.62
89-prism 178 267 91 58,384 35,619,821,719,604,700,475,856,960,433,270,363,377,351,219,128,623,689 12,147,147,750,557,166,009,277,266,446,164,341,729,697,940,171,357,263 34.10
90-prism 180 270 92 61,200 134,428,635,924,381,058,558,342,373,483,695,239,998,308,348,737,337,500 45,835,667,167,756,167,327,808,684,200,497,934,083,305,406,003,263,080 34.10
91-prism 182 273 93 62,680 507,268,882,587,101,907,135,928,966,969,950,901,239,037,550,690,556,691 172,961,693,284,074,318,802,898,801,630,921,272,808,376,171,618,605,053 34.10
92-prism 184 276 94 64,400 1,913,957,124,704,016,720,646,095,852,898,568,656,870,706,493,680,372,352 652,587,801,648,072,657,385,242,064,252,120,087,145,845,127,550,204,344 34.10
93-prism 186 279 95 66,588 7,220,626,376,739,743,204,712,927,445,165,724,589,272,091,607,783,034,325 2,440,735,263,004,787,039,318,901,058,435,443,959,679,578,395,810,067,499 33.80
94-prism 188 282 96 69,936 27,237,505,194,018,078,864,602,783,571,427,472,860,418,008,032,804,687,924 9,200,983,829,108,871,720,824,454,037,812,685,220,751,863,003,740,596,660 33.78
95-prism 190 285 97 72,960 102,733,154,885,874,285,090,022,412,414,655,338,630,173,029,721,095,307,295 34,703,835,672,760,725,659,254,115,573,775,525,383,657,603,505,506,462,795 33.78
96-prism 192 288 98 74,112 387,441,199,483,882,790,074,386,518,739,975,425,611,166,119,546,861,977,600 130,879,809,160,332,709,730,909,060,139,747,285,756,827,067,222,934,653,120 33.78
97-prism 194 291 99 76,084 1,461,012,223,100,730,076,686,798,067,582,261,367,840,286,394,049,834,758,177 493,533,958,003,824,346,986,768,858,213,124,355,417,772,366,581,533,141,923 33.78
98-prism 196 294 100 79,968 5,508,783,927,988,926,594,011,003,719,084,348,517,902,267,230,291,120,238,668 1,842,484,668,472,842,688,235,271,932,872,735,062,103,648,776,666,005,382,528 33.45
99-prism 198 297 101 83,556 20,768,847,849,083,459,407,230,734,273,699,231,588,352,138,676,085,736,775,275 6,946,403,315,106,848,273,582,090,103,916,680,058,367,861,,235,272,392,879,353 33.45
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Table 4.4: The number and percentage of non-overlapping edge unfoldings for
Archimedean antiprisms.

m-antiprisms |V | |E| |F | #(MOPU) #(Edge unfolding) #(Non-overlapping edge unfolding) Pct.(%)

12-antiprism 24 48 26 48 51,599,794,176 49,743,531,024 96.40
13-antiprism 26 52 28 52 383,142,771,674 369,359,503,344 96.40
14-antiprism 28 56 30 56 2,828,107,288,188 2,726,368,290,352 96.40
15-antiprism 30 60 32 60 20,768,716,848,000 20,021,578,135,380 96.40
16-antiprism 32 64 34 64 151,840,963,183,392 146,378,600,602,880 96.40
17-antiprism 34 68 36 204 1,105,779,284,582,146 989,008,190,008,480 89.44
18-antiprism 36 72 38 432 8,024,954,790,380,544 1,517,682,139,108,200 18.91
19-antiprism 38 76 40 456 58,059,628,319,357,318 10,550,126,657,845,736 18.17
20-antiprism 40 80 42 560 418,891,171,182,561,000 72,542,787,706,846,320 17.31
21-antiprism 42 84 44 672 3,014,678,940,049,375,872 500,034,989,831,068,818 16.59
22-antiprism 44 88 46 704 21,646,865,272,061,272,716 3,449,844,625,120,946,448 15.94
23-antiprism 46 92 48 736 155,113,904,634,576,144,814 23,752,014,262,731,255,118 15.31
24-antiprism 48 96 50 960 1,109,391,149,998,449,819,648 162,941,846,136,285,049,392 14.69
25-antiprism 50 100 52 1,000 7,920,708,398,483,722,531,250 1,117,782,108,867,439,830,950 14.11
26-antiprism 52 104 54 1,040 56,460,916,728,463,179,389,652 7,655,723,643,342,875,568,936 13.56
27-antiprism 54 108 56 1,404 401,873,068,071,158,383,691,136 40,561,091,359,603,932,081,708 10.09
28-antiprism 56 112 58 1,792 2,856,496,726,273,368,888,420,984 264,478,642,931,290,919,674,648 9.26
29-antiprism 58 116 60 2,204 20,277,959,821,998,087,658,569,178 1,739,241,575,214,473,110,359,470 8.58
30-antiprism 60 120 62 2,520 143,779,866,504,299,168,102,784,000 11,718,403,001,480,040,992,138,460 8.15
31-antiprism 62 124 64 2,852 1,018,331,261,238,041,888,906,149,982 79,227,778,390,260,949,681,648,022 7.78
32-antiprism 64 128 66 2,944 7,204,899,406,395,028,729,775,662,656 535,088,808,567,353,165,252,109,504 7.42
33-antiprism 66 132 68 3,168 50,926,337,537,628,456,148,426,034,304 3,609,765,503,967,786,066,361,340,190 7.08
34-antiprism 68 136 70 3,808 359,631,713,591,480,208,135,988,999,908 23,021,698,690,971,475,731,990,378,832 6.40
35-antiprism 70 140 72 4,200 2,537,451,036,289,964,010,662,071,375,750 155,062,662,340,102,785,066,461,404,560 6.11
36-antiprism 72 144 74 4,464 17,888,860,941,014,408,891,681,749,082,112 1,043,552,488,055,809,272,918,087,425,832 5.83
37-antiprism 74 148 76 4,884 126,017,967,976,156,654,397,534,266,950,026 6,992,936,456,851,489,392,078,163,320,978 5.55
38-antiprism 76 152 78 5,168 887,084,326,468,926,324,030,843,544,372,524 44,438,923,337,128,563,356,651,187,920,012 5.01
39-antiprism 78 156 80 5,772 6,240,170,805,918,890,922,630,444,422,537,088 297,478,382,005,821,691,364,579,412,449,706 4.77
40-antiprism 80 160 82 6,400 43,867,453,323,674,409,143,926,999,140,738,000 1,983,085,398,586,205,226,911,001,715,311,520 4.52
41-antiprism 82 164 84 6,888 308,188,798,032,167,102,842,859,597,775,205,042 13,033,685,199,501,916,122,251,960,215,169,912 4.23
42-antiprism 84 168 86 7,392 2,163,878,359,899,340,120,052,552,791,046,378,496 83,997,191,224,353,764,482,646,914,913,598,624 3.88
43-antiprism 86 172 88 8,084 15,184,572,514,675,762,272,842,247,131,661,635,894 557,611,275,066,805,327,907,702,044,873,987,094 3.67
44-antiprism 88 176 90 8,624 106,496,994,569,720,990,727,767,374,869,609,730,968 3,729,635,546,799,294,784,771,659,621,890,472,664 3.50
45-antiprism 90 180 92 9,360 746,530,833,968,188,588,851,681,523,936,666,896,000 24,431,729,185,673,950,396,752,450,635,669,388,990 3.27
46-antiprism 92 184 94 10,304 5,230,505,089,344,431,048,507,144,123,815,456,787,772 158,880,058,222,038,902,280,026,924,999,326,487,380 3.04
47-antiprism 94 188 96 11,656 36,629,772,069,905,834,755,580,161,013,689,257,929,566 1,060,539,783,181,405,072,337,781,040,938,759,619,342 2.89
48-antiprism 96 192 98 12,096 256,405,984,103,100,622,357,453,677,837,305,041,649,664 7,079,805,121,439,383,694,342,635,647,608,115,253,632 2.76
49-antiprism 98 196 100 12,740 1,794,045,942,295,064,986,560,011,614,233,598,156,819,298 47,081,894,856,079,882,568,065,465,270,204,379,835,426 2.62
50-antiprism 100 200 102 13,200 12,547,524,306,762,115,327,139,640,139,635,651,225,562,500 313,979,052,982,335,359,074,797,901,078,961,675,923,700 2.50
51-antiprism 102 204 104 14,280 87,722,051,242,994,803,143,643,140,957,694,192,485,255,552 2,093,220,753,862,771,345,181,080,442,901,094,417,625,334 2.38
52-antiprism 104 208 106 15,600 613,045,214,965,087,171,516,365,035,207,733,551,443,709,736 13,847,372,368,702,386,134,230,159,841,426,631,160,249,520 2.26
53-antiprism 106 212 108 16,324 4,282,679,690,470,859,990,496,705,254,406,531,422,464,957,834 92,254,873,128,059,280,848,212,456,691,530,042,110,511,660 2.15
54-antiprism 108 216 110 17,064 29,907,770,896,467,759,248,303,121,099,365,111,834,448,227,328 612,564,147,448,713,555,111,946,603,958,121,691,610,818,284 2.04
55-antiprism 110 220 112 18,480 208,787,039,294,802,995,558,997,194,768,329,038,664,289,012,750 4,066,189,399,259,848,921,000,213,749,369,244,891,377,708,200 1.95
56-antiprism 112 224 114 20,160 1,457,066,704,859,013,168,857,939,059,215,469,544,106,252,283,632 26,882,734,603,660,531,639,929,002,113,295,431,420,663,838,960 1.84
57-antiprism 114 228 116 20,748 10,165,220,976,851,309,359,988,036,885,968,497,679,868,602,544,256 177,996,738,793,784,313,663,675,391,748,841,946,567,960,370,322 1.75
58-antiprism 116 232 118 22,272 70,895,802,507,339,433,606,655,281,989,227,262,198,207,167,104,404 1,180,051,219,817,443,505,617,832,090,129,322,320,242,838,961,804 1.66
59-antiprism 118 236 120 23,364 494,305,112,112,066,674,502,236,216,299,036,533,680,424,852,661,558 7,834,254,664,590,050,866,382,827,703,061,557,850,624,078,276,054 1.58
60-antiprism 120 240 122 25,440 3,445,441,668,665,681,646,962,862,224,080,264,597,391,436,598,272,000 50,403,377,478,963,170,902,563,467,427,787,499,348,682,069,083,400 1.46
61-antiprism 122 244 124 26,352 24,008,998,657,730,043,418,999,210,016,836,054,318,873,476,626,984,762 326,358,125,570,791,131,913,614,291,766,990,868,139,803,779,993,658 1.36
62-antiprism 124 248 126 27,528 167,257,831,873,332,437,880,307,618,553,808,550,206,593,147,036,070,876 1,854,939,808,105,063,172,332,156,437,560,469,843,454,970,270,135,872 1.11
63-antiprism 126 252 128 29,232 1,164,892,592,931,629,392,338,324,783,815,505,600,459,556,438,051,914,624 12,307,784,791,893,071,962,543,568,932,644,431,739,514,519,035,956,010 1.06
64-antiprism 128 256 130 30,720 8,111,027,415,042,412,087,059,884,505,184,466,841,764,376,870,066,703,488 81,711,622,221,644,705,528,593,850,868,389,602,010,305,415,118,773,632 1.01
65-antiprism 130 260 132 31,720 56,462,462,218,649,594,296,489,126,547,728,233,809,837,328,422,164,209,250 542,324,566,561,175,718,389,472,139,379,279,869,381,405,090,020,827,940 0.96
66-antiprism 132 264 134 33,264 392,953,311,363,100,782,765,649,901,258,650,734,263,966,574,522,587,784,192 3,596,222,163,944,667,874,762,237,572,824,582,243,007,524,492,920,016,364 0.92
67-antiprism 134 268 136 35,108 2,734,150,277,149,943,789,424,653,221,975,737,385,578,070,013,528,736,239,846 23,843,879,380,617,148,795,466,186,545,241,390,034,312,194,471,190,721,410 0.87
68-antiprism 136 272 138 37,536 19,019,848,444,227,125,038,960,788,030,632,146,757,126,643,109,790,562,588,744 158,047,277,673,032,158,023,557,741,664,008,526,923,236,605,161,466,417,144 0.83
69-antiprism 138 276 140 38,640 132,281,097,981,397,378,649,216,327,599,160,829,981,177,127,561,996,392,778,368 1,047,172,473,392,558,836,251,756,065,865,616,682,360,236,358,525,772,236,994 0.79
70-antiprism 140 280 142 40,040 919,808,251,652,716,036,371,207,892,032,413,807,786,850,000,883,510,526,443,500 6,,940,458,038,739,497,932,445,601,709,547,911,589,835,564,772,106,776,166,220 0.75
71-antiprism 142 284 144 42,600 6,394,523,254,028,788,004,842,904,160,103,465,297,190,061,440,230,870,478,513,422 45,780,684,032,708,802,155,441,190,837,474,021,683,024,682,589,684,818,605,684 0.72
72-antiprism 144 288 146 45,504 44,446,020,245,409,850,388,919,123,546,153,029,436,510,863,260,931,308,786,876,416 303,133,167,415,275,991,480,997,730,729,891,095,322,066,594,918,858,437,619,312 0.68
73-antiprism 146 292 148 47,596 308,868,631,905,426,344,328,427,311,641,720,314,433,493,675,086,071,079,589,514,514 1,993,862,494,867,116,801,892,228,563,979,771,114,995,027,333,450,860,247,871,268 0.65
74-antiprism 148 296 150 48,840 2,146,017,331,464,816,766,794,536,512,479,696,001,159,731,435,059,847,042,295,248,948 13,209,556,361,833,768,036,797,427,669,629,105,268,373,114,777,374,196,971,004,696 0.62
75-antiprism 150 300 152 51,000 14,907,792,173,512,400,291,813,743,106,474,046,926,942,024,685,661,040,985,606,000,000 87,479,366,310,664,176,876,248,551,641,616,300,775,155,031,501,800,307,738,254,650 0.59
76-antiprism 152 304 154 54,112 103,541,921,350,898,507,949,080,104,593,610,092,290,674,442,999,146,438,446,892,628,952 575,728,071,259,409,983,216,254,627,908,333,000,969,928,942,023,795,016,355,188,312 0.56
77-antiprism 154 308 156 56,056 719,024,872,072,048,704,795,415,649,743,438,922,497,201,689,435,088,835,503,134,774,586 3,803,094,888,814,534,194,244,711,198,507,594,930,371,276,487,989,070,769,505,333,618 0.53
78-antiprism 156 312 158 57,096 4,992,273,293,210,566,749,051,331,629,112,187,169,112,455,673,298,970,063,008,551,517,184 25,178,232,163,989,764,173,902,561,452,762,553,210,080,327,618,722,145,846,907,592,560 0.50
79-antiprism 158 316 160 59,724 34,656,236,736,012,517,253,147,752,391,859,302,565,359,593,442,298,439,368,730,738,540,478 166,652,766,549,703,045,550,278,222,766,074,887,734,370,837,666,827,789,428,184,155,666 0.48
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Figure 4.2: The percentage of non-overlapping edge unfoldings in Archimedean an-
tiprisms.

Figure 4.3: MOPUs in Archimedean 28-gonal prisms (excluding those with rota-
tional and mirror symmetry).

From these results, we can conclude that the percentage of non-overlapping edge
unfoldings depends not on the number of MOPUs in each polyhedron, but rather
on the number of faces in each MOPU.

4.2.2 The number of non-overlapping lattice unfoldings for
cuboids

Table 4.5 shows the results of counting the number of lattice unfoldings in (xL, yL, zL)-
cuboids that do not have face contact, edge contact, or vertex contact, respectively.

Figure 4.7 shows a line graph with the values of z for (1, 1, z)-cuboids (1 ≤ z ≤
10) on the horizontal axis, and the percentage of lattice unfoldings without each
type of contact on the vertical axis. From these results, we can observe that in an
(xL, yL, zL) cuboid, as the values of z increase while keeping x and y fixed, the
percentage of non-overlapping unfoldings decreases.

There are cuboids with different side lengths that have the same surface area.
The percentages of non-overlapping lattice unfoldings for cuboids with the same
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Figure 4.4: MOPUs in Archimedean 29-gonal prisms (excluding those with rota-
tional and mirror symmetry, and the three types from n = 28).

Figure 4.5: MOPUs in Archimedean 17-gonal antiprisms (excluding those with ro-
tational and mirror symmetry).

surface area are shown in Table 4.6 to 4.10.

For cuboids with surface areas of 22 and 34, those with larger volumes tend to
have a lower percentage of non-overlapping edge unfoldings. However, this tendency
does not appear for cuboids with surface areas of 28, 30, and 32. These results
indicate that, even for cuboids with the same surface area, a larger volume does not
necessarily lead to a lower percentage of non-overlapping lattice unfoldings.

Figure 4.6: MOPUs in Archimedean 18-gonal antiprisms (excluding those with ro-
tational and mirror symmetry, and the three types from m = 17).
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Table 4.5: The number and percentage of non-overlapping lattice unfoldings for
cuboids.

No faces-in-touch No edges-in-touch No vertices-in-touch

Cuboids |V | |E| |F | #

(
Lattice unfolding

(including overlaps)

)
#(MOPU) #

(
Lattice

(unfolding)

)
Pct.(%) #(MOPU) #

(
Lattice
unfolding

)
Pct.(%) #(MOPU) #

(
Lattice
unfolding

)
Pct.(%)

(1, 1, 1) 8 12 6 384 0 384 100.00 0 384 100.00 0 384 100.00
(1, 1, 2) 12 20 10 12,124 0 12,124 100.00 0 12,124 100.00 32 11,484 94.72
(1, 1, 3) 16 28 14 240,304 16 240,240 99.97 80 238,432 99.22 304 212,920 88.60
(1, 1, 4) 20 36 18 3,708,380 80 3,705,820 99.93 512 3,644,600 98.28 1,232 3,075,400 82.93
(1, 1, 5) 24 44 22 49,206,176 208 49,156,592 99.90 1,504 47,970,720 97.49 3,408 38,043,936 77.32
(1, 1, 6) 28 52 26 592,188,796 464 591,487,340 99.88 3,808 573,122,568 96.78 8,448 424,509,028 71.68
(1, 1, 7) 32 60 30 6,671,469,328 1,104 6,663,017,440 99.87 9,360 6,409,933,496 96.08 20,432 4,407,661,888 66.07
(1, 1, 8) 36 68 34 71,772,242,780 2,704 71,679,140,716 99.87 22,912 68,429,543,676 95.34 49,456 43,445,829,708 60.53
(1, 1, 9) 40 76 38 747,116,459,968 6,544 746,143,953,328 99.87 55,584 706,395,487,984 94.55 119,504 412,096,369,696 55.16
(1, 1, 10) 44 74 42 7,593,452,118,844 15,760 7,583,621,450,924 99.87 134,368 7,114,772,651,372 93.70 288,416 3,797,487,539,408 50.01

(1, 2, 2) 18 32 16 1,675,184 0 1,675,184 100.00 32 1,553,536 92.74 128 1,228,824 73.35
(1, 2, 3) 24 44 22 131,478,632 544 130,212,292 99.04 1,648 111,177,796 84.56 3,312 75,653,292 57.54
(1, 2, 4) 30 56 28 7,692,072,382 14,920 7,528,985,598 97.88 32,048 5,970,306,978 77.62 52,960 3,535,269,930 45.96
(1, 2, 5) 36 68 34 375,631,947,892 141,816 364,028,460,124 96.91 291,736 270,654,176,916 72.05 449,552 140,837,624,986 37.49

(2, 2, 2) 26 48 24 761,804,472 0 761,804,472 100.00 240 522,735,564 68.62 432 304,891,548 40.02
(2, 2, 3) 34 64 32 203,758,066,112 5,824 196,470,177,268 96.42 19,392 109,840,848,592 53.91 34,704 48,990,450,676 24.04

(1, 3, 3) 32 60 30 37,054,664,336 18,656 35,759,106,992 96.50 53,824 26,138,414,976 70.54 87,057 14,279,985,328 38.54

(
√
2,
√
2,
√
2) 14 24 12 80,352 0 80,352 100.00 0 80,352 100.00 0 80,352 100.00

(
√
2,
√
2, 2

√
2) 22 40 20 36,045,144 64 35,810,728 99.35 416 32,634,384 90.54 832 26,150,088 72.55

(
√
2,
√
2, 3

√
2) 30 56 28 8,178,632,284 9,744 8,051,279,652 98.44 21,824 6,849,636,840 83.75 35,440 4,579,514,256 55.99

(
√
2,
√
2, 4

√
2) 38 72 36 1,332,665,934,528 189,696 1,304,508,754,808 97.89 360,912 1,043,581,316,640 78.31 580,353 594,311,017,928 44.60

(
√
2, 2

√
2, 2

√
2) 34 64 32 207,761,826,744 13,296 198,307,283,288 95.45 45,776 135,619,116,108 65.28 76,432 67,737,527,156 32.60

(
√
5,
√
5,
√
5) 32 60 30 59,902,047,024 336 58,033,038,468 96.88 2,520 35,216,407,908 58.79 3,600 14,389,530,720 24.02

Figure 4.7: The percentage of lattice unfoldings without each type of contact for
(1, 1, z)-cuboids.

4.3 Summary and discussion on the number of
non-overlapping unfoldings

In this chapter, we presented results on counting the number of non-overlapping un-
foldings in edge unfoldings of convex regular-faced polyhedra and lattice unfoldings
of cuboids.

First, we proposed an algorithm for counting non-overlapping unfoldings using
Zero-suppressed Decision Diagrams (ZDDs) and the subsetting method. In this pro-
cess, we focused on the minimal overlapping partial unfoldings (MOPUs), which were
enumerated by rotational unfolding. We then conducted computational experiments
on the edge unfoldings of several Archimedean solids, Johnson solids, Archimedean
prisms, and Archimedean antiprisms, counting the number of non-overlapping edge
unfoldings.
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Table 4.6: The percentage of non-overlapping lattice unfoldings for a cuboid with a
surface area of 22.

Cuboids Volume No faces-in-touch No edges-in-touch No vertices-in-touch
(1, 1, 5) 5 99.90 97.49 77.32
(1, 2, 3) 6 99.04 84.56 57.54

Table 4.7: The percentage of non-overlapping lattice unfoldings for a cuboid with a
surface area of 28.

Cuboids Volume No faces-in-touch No edges-in-touch No vertices-in-touch
(1, 2, 4) 8 97.88 77.62 45.96

(
√
2,
√
2, 3

√
2) 6

√
2 98.44 83.75 55.99

As a result, we showed that the percentage of non-overlapping edge unfoldings
is influenced not by the number of MOPUs, but by the number of faces consti-
tuting each MOPU. Additionally, for n-gonal Archimedean prisms and m-gonal
Archimedean antiprisms, we observed that increasing the values of n and m de-
creases the percentage of non-overlapping edge unfoldings.

Next, we extended the same approach to counting non-overlapping lattice un-
foldings of cuboids, we counted unfoldings without faces-in-touch, edges-in-touch,
or vertices-in-touch. As a result, we found that cuboids with increasing side lengths
tend to have a lower percentage of non-overlapping lattice unfoldings. However, for
cuboids with the same surface area but different volumes, there was no clear relation-
ship between volume and the percentage of non-overlapping unfoldings. Contrary to
expectations, increasing the volume did not necessarily lead to a higher percentage
of non-overlapping unfoldings.

On the other hand, for the Rhombicosidodecahedron, Snub dodecahedron, and
Rhombitruncated icosidodecahedron in Table 4.1, as well as J68 to J82 in Table 4.2,
the enumeration of MOPUs resulted in a timeout, making it impossible to count
the number of non-overlapping edge unfoldings. Furthermore, even if the MOPU
enumeration succeeds, as seen in the case of J48 in Table 4.2, counting the number
of non-overlapping unfoldings can still result in a timeout. This suggests that when
MOPU enumeration results in a timeout, counting the number of non-overlapping
unfoldings is also likely to result in a timeout. Therefore, improving the efficiency
of both the rotational unfolding and the algorithm for counting non-overlapping
unfoldings becomes essential. One possible improvement lies in refining the pruning

Table 4.8: The percentage of non-overlapping lattice unfoldings for a cuboid with a
surface area of 30.

Cuboids Volume No faces-in-touch No edges-in-touch No vertices-in-touch
(1, 1, 7) 7 99.87 96.08 66.07
(1, 3, 3) 9 96.50 70.54 38.54

(
√
5,
√
5,
√
5) 5

√
5 96.88 58.79 24.02
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Table 4.9: The percentage of non-overlapping lattice unfoldings for a cuboid with a
surface area of 32.

Cuboids Volume No faces-in-touch No edges-in-touch No vertices-in-touch
(
√
2, 2

√
2, 2

√
2) 8

√
2 95.45 65.28 32.60

2, 2, 3 12 96.42 53.91 24.04

Table 4.10: The percentage of non-overlapping lattice unfoldings for a cuboid with
a surface area of 34.

Cuboids Volume No faces-in-touch No edges-in-touch No vertices-in-touch
(1, 1, 8) 8 99.87 95.34 60.53
(1, 2, 5) 10 96.91 72.05 37.49

process. In the current rotational unfolding, pruning based on distances is imple-
mented, yet the estimation of the sum of the circumradii of the remaining faces
remains insufficient. To address this limitation, by calculating the reachable dis-
tances for the remaining faces using techniques such as dynamic programming, it
becomes feasible to perform pruning at an earlier stage.

Additionally, this study only considered polyhedra where all edge lengths are
equal. As a future direction, extending this method to more general convex polyhe-
dra would be interesting, especially to examine how the results of Schevon, as shown
in Figure 1.6, would change.





Chapter 5

Conclusion

In this study, we showed the existence of overlapping unfoldings for polyhedra and,
in cases where overlapping unfoldings exist, computed the number of overlapping
and non-overlapping unfoldings. We achieve this by using the rotational unfold-
ing algorithm, which efficiently determines whether overlaps exist, along with an
enumeration algorithm based on MOPUs obtained through rotational unfolding.

The ultimate goal of this research is to solve the problem mentioned in Con-
jecture 1.1: “For any convex polyhedron, there exists at least one non-overlapping
edge unfolding.” This problem is known as Dürer’s problem. To solve this problem,
either of the following approaches must be taken [DO07]:

Approach 1 Discover a convex polyhedron that has only overlapping edge unfold-
ings.

Approach 2 Develop an edge unfolding algorithm that can be applied to all convex
polyhedra.

As an idea for addressing Approach 1, determining the existence of overlaps
in various convex polyhedra can be considered. In this method, the following two
challenges are proposed as future works to bridge the gap between the current state
and the intended solution.

The first challenge, as mentioned in Section 4.3, is “extending the proposed
method to polyhedra that do not have equal-length edges.” As shown in Propo-
sition 2.2, the current rotational unfolding method determines overlaps in partial
unfoldings by checking the overlaps of the circumcircles of the faces. However, this
approach cannot be applied to faces with more general shapes. Therefore, it is nec-
essary to precisely compute edge intersections between faces located at the ends of
partial unfoldings.

The second challenge is “generating random convex polyhedra.” When generat-
ing random convex polyhedra, edge lengths and face angles may become irrational
numbers. Developing a method to retain and compute with these irrational values
remains an important task.

As an idea for addressing Approach 2, classifying convex polyhedra and devis-
ing unfolding algorithms for each classification can be considered. The following
discusses future works in pursuing this approach.
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First, there are uncountably infinite convex polyhedra. However, according to
Steinitz’s theorem [Ste22], all convex polyhedra can be represented as polyhedral
graphs (or 3-vertex-connected planar graphs). This allows us to organize convex
polyhedra into a countably infinite set by considering them as polyhedral graphs.
Moreover, by limiting the number of vertices to at most k, we can classify them into
a finite set of polyhedral graphs, enabling enumeration.

Thus, the first task is the classification of polyhedral graphs. Classification
should be performed based on various features such as vertex degrees, face shapes,
and symmetries.

Next, for each classified polyhedral graph, existing edge unfolding algorithms
should be applied if available. If no suitable algorithm exists, a new algorithm for
generating non-overlapping edge unfoldings must be developed. This approach is
expected to lead to a comprehensive edge unfolding algorithm for convex polyhedra.

The findings of this study represent a significant step toward deepening our
understanding of the edge unfolding problem for polyhedra. However, substantial
challenges remain in solving Dürer’s problem. We hope that addressing the tasks
outlined in the proposed approaches will help bridge this gap in future research.



Appendix A

Additional drawings

A.1 Additional drawings for the Johnson Solids

J20 (1) (2) (3) (4)

Figure A.1: List of MOPEs in J20.

J21 (1) (2) (3) (4)

(5) (6) (7) (8) (9)

Figure A.2: List of MOPEs in J21.
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J24 (1) (2) (3) (4)

(5) (6)

Figure A.3: List of MOPEs in J24.

J25 (1) (2) (3) (4)

(5) (6) (7) (8) (9)

(10) (11) (12) (13) (14)

Figure A.4: List of MOPEs in J25.
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(15) (16) (17) (18) (19)

(20) (21) (22) (23) (24)

Figure A.4: List of MOPEs in J25. (continue)

J32 (1) (2)

Figure A.5: List of MOPEs in J32.

J33 (1) (2)

Figure A.6: List of MOPEs in J33.

J34 (1)

Figure A.7: A MOPE in J34.
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J38 (1) (2) (3) (4)

Figure A.8: List of MOPEs in J38.

J39 (1) (2) (3) (4)

Figure A.9: List of MOPEs in J39.

J40 (1) (2) (3) (4)

(5) (6) (7) (8) (9)

(10) (11) (12) (13) (14)

Figure A.10: List of MOPEs in J40.
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(15) (16) (17) (18) (19)

(20) (21) (22) (23) (24)

(25) (26) (27) (28) (29)

(30) (31) (32)

Figure A.10: List of MOPEs in J40. (continue)

J39 (1) (2) (3) (4)

Figure A.11: List of MOPEs in J41.
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(5) (6) (7) (8) (9)

(10) (11) (12) (13) (14)

(15) (16) (17) (18) (19)

(20) (21) (22) (23) (24)

(25) (26) (27) (28) (29)

(30) (31) (32)

Figure A.11: List of MOPEs in J41. (continue)
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J42 (1) (2) (3) (4)

(5) (6) (7) (8) (9)

(10) (11) (12) (13) (14)

(15) (16) (17) (18) (19)

(20) (21) (22) (23) (24)

(25) (26) (27) (28) (29)

Figure A.12: List of MOPEs in J42.
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(30) (31) (32) (33) (34)

(35) (36) (37) (38) (39)

(40) (41) (42) (43) (44)

(45) (46) (47) (48) (49)

(50) (51) (52) (53) (54)

Figure A.12: List of MOPEs in J42. (continue)
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(35) (36) (37) (38) (39)

(40) (41) (42) (43) (44)

(45) (46) (47) (48) (49)

(70) (71) (72) (73) (74)

Figure A.12: List of MOPEs in J42. (continue)

J43 (1) (2) (3) (4)

Figure A.13: List of MOPEs in J43.
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(5) (6) (7) (8) (9)

(10) (11) (12) (13) (14)

(15) (16) (17) (18) (19)

(20) (21) (22) (23) (24)

(25) (26) (27) (28) (29)

(30) (31) (32) (33) (34)

Figure A.13: List of MOPEs in J43. (continue)
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(35) (36) (37) (38) (39)

(40) (41) (42) (43) (44)

(45) (46) (47) (48) (49)

(50) (51) (52) (53) (54)

(55) (56) (57) (58) (59)

(60) (61) (62) (63) (64)

Figure A.13: List of MOPEs in J43. (continue)
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(65) (66) (67) (68) (69)

(70)

Figure A.13: List of MOPEs in J43. (continue)

J44 (1) (2) (3) (4)

Figure A.14: List of MOPEs in J44.

J45 (1) (2) (3) (4)

(5) (6)

Figure A.15: List of MOPEs in J45.
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J46 (1) (2) (3) (4)

(5) (6) (7) (8) (9)

(10) (11) (12) (13)

Figure A.16: List of MOPEs in J46.

J47 (1) (2) (3) (4)

(5) (6) (7) (8) (9)

Figure A.17: List of MOPEs in J47.



62 A.1. ADDITIONAL DRAWINGS FOR THE JOHNSON SOLIDS

(10) (11) (12) (13) (14)

(15) (16) (17) (18) (19)

(20) (21) (22) (23) (24)

(25) (26) (27) (28) (29)

(30) (31) (32) (33) (34)

(35) (36) (37) (38) (39)

Figure A.17: List of MOPEs in J47. (continue)
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(40) (41) (42) (43) (44)

(45) (46) (47) (48) (49)

(50) (51) (52) (53) (54)

(55) (56) (57) (58) (59)

(60) (61) (62) (63) (64)

(65) (66) (67) (68) (69)

Figure A.17: List of MOPEs in J47. (continue)
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(70) (71) (72) (73) (74)

(75) (76) (77) (78) (79)

(80) (81) (82) (83) (84)

(85) (86) (87) (88) (89)

(90) (91) (92) (93) (94)

(95) (96) (97) (98) (99)

Figure A.17: List of MOPEs in J47. (continue)
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(100) (101) (102) (103) (104)

(105) (106) (107) (108) (109)

(110) (111) (112) (113) (114)

(115) (116) (117) (118) (119)

(120) (121) (122) (123) (124)

(125) (126) (127) (128) (129)

Figure A.17: List of MOPEs in J47. (continue)
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(130) (131) (132) (133) (134)

(135) (136) (137) (138) (139)

(140) (141) (142) (143) (144)

(145) (146) (147) (148) (149)

(150) (151) (152) (153) (154)

(155) (156) (157) (158) (159)

Figure A.17: List of MOPEs in J47. (continue)
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(170) (171) (172) (173) (174)

(175) (176) (177) (178) (179)

(180) (181) (182) (183) (184)
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Figure A.17: List of MOPEs in J47. (continue)
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(190) (191) (192) (193) (194)

(195) (196) (197) (198) (199)

(200) (201) (202) (203) (204)

(205) (206) (207) (208) (209)

(210) (211) (212) (213) (214)

(215) (216) (217)

Figure A.17: List of MOPEs in J47. (continue)
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J48 (1) (2) (3) (4)

(5) (6) (7) (8) (9)

(10) (11) (12) (13) (14)

(15) (16) (17) (18) (19)

(20) (21) (22) (23) (24)

(25) (26) (27) (28) (29)

Figure A.18: List of MOPEs in J48.
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(30) (31) (32) (33) (34)

(35) (36) (37) (38) (39)

(40) (41) (42) (43) (44)

(45) (46) (47) (48) (49)

(50) (51) (52) (53) (54)

(55) (56) (57) (58) (59)

Figure A.18: List of MOPEs in J48. (continue)
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Figure A.18: List of MOPEs in J48. (continue)
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Figure A.18: List of MOPEs in J48. (continue)
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(135) (136) (137) (138) (139)
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Figure A.18: List of MOPEs in J48. (continue)
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Figure A.18: List of MOPEs in J48. (continue)
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Figure A.18: List of MOPEs in J48. (continue)
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Figure A.18: List of MOPEs in J48. (continue)
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Figure A.18: List of MOPEs in J48. (continue)
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Figure A.18: List of MOPEs in J48. (continue)
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Figure A.18: List of MOPEs in J48. (continue)
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Figure A.18: List of MOPEs in J48. (continue)



APPENDIX A. ADDITIONAL DRAWINGS 81

(360) (361) (362) (363) (364)

(365) (366) (367) (368) (369)

(370) (371) (372) (373) (374)

(375) (376) (377) (378) (379)

(380) (381) (382) (383) (384)

(385) (386) (387) (388) (389)
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(615) (616) (617) (618) (619)

(620) (621) (622) (623) (624)

(625) (626) (627) (628) (629)

Figure A.18: List of MOPEs in J48. (continue)
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(630) (631) (632) (633) (634)

(635) (636) (637) (638) (639)

(640) (641) (642) (643) (644)

(645) (646) (647) (648) (649)

(650) (651) (652) (653) (654)

(655) (656) (657) (658) (659)

Figure A.18: List of MOPEs in J48. (continue)
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(660) (661) (662) (663) (664)

(665) (666) (667) (668) (669)

(670) (671) (672) (673) (674)

(675) (676) (677) (678) (679)

(680) (681) (682) (683) (684)

(685) (686) (687) (688) (689)

Figure A.18: List of MOPEs in J48. (continue)
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(690) (691) (692) (693) (694)

(695) (696) (697) (698) (699)

(700) (701) (702) (703) (704)

(705) (706) (707) (708) (709)

(710) (711) (712) (713) (714)

(715)

Figure A.18: List of MOPEs in J48. (continue)
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J54 (1)

Figure A.19: A MOPE in J54.

J55 (1)

Figure A.20: A MOPE in J55.

J56 (1)

Figure A.21: A MOPE in J56.

J57 (1)

Figure A.22: A MOPE in J57.
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J58 (1)

Figure A.23: A MOPE in J58.

J59 (1)

Figure A.24: A MOPE in J59.

J60 (1)

Figure A.25: A MOPE in J60.

J61 (1)

Figure A.26: A MOPE in J61.
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J66 (1) (2) (3) (4)

(5) (6) (7) (8) (9)

(10) (11) (12) (13)

Figure A.27: List of MOPEs in J66.

J67 (1) (2) (3) (4)

(5) (6) (7) (8) (9)

(10) (11) (12) (13)

Figure A.28: List of MOPEs in J67.
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J83 (1) (2) (3) (4)

(5) (6) (7) (8) (9)

(10) (11) (12) (13) (14)

(15) (16) (17) (18) (19)

(20) (21) (22) (23) (24)

(25) (26) (27) (28) (29)

Figure A.29: List of MOPEs in J83.
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(30) (31) (32) (33) (34)

(35) (36) (37) (38) (39)

(40) (41) (42) (43) (44)

(45) (46) (47) (48) (49)

(50) (51) (52) (53) (54)

(55) (56) (57) (58) (59)

Figure A.29: List of MOPEs in J83. (continue)
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(60) (61) (62) (63) (64)

(65) (66) (67) (68) (69)

(70) (71) (72) (73) (74)

(75) (76) (77) (78) (79)

(80) (81) (82) (83) (84)

(85) (86) (87) (88) (89)

Figure A.29: List of MOPEs in J83. (continue)
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(90) (91) (92) (93) (94)

(95) (96) (97) (98) (99)

(100) (101) (102) (103) (104)

(105) (106) (107) (108) (109)

(110) (111) (112) (113) (114)

(115) (116) (117) (118) (119)

Figure A.29: List of MOPEs in J83. (continue)
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(120) (121) (122) (123) (124)

(125) (126) (127) (128) (129)

(130) (131) (132) (133) (134)

(135) (136) (137) (138) (139)

(140) (141) (142) (143) (144)

(145) (146) (147) (148) (149)

Figure A.29: List of MOPEs in J83. (continue)
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(150) (151) (152) (153) (154)

(155) (156) (157) (158) (159)

(160) (161) (162) (163) (164)

(165) (166) (167) (168) (169)

(170) (171) (172) (173) (174)

(175) (176) (177) (178) (179)

Figure A.29: List of MOPEs in J83. (continue)
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(180) (181) (182) (183) (184)

(185) (186) (187) (188)

Figure A.29: List of MOPEs in J83. (continue)

MOPE J68 J69 J70 J71

Figure A.30: An example of a common MOPE in J68 to J77.

MOPE J72 J73 J74 J75

J76 J77 J78 J79

J80 J81 J82

Figure A.31: An example of a common MOPE in J72 to J82.
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A.2 Additional drawings for the Archimedean prisms

PR(25) PR(26)

PR(27) PR(28)

Figure A.32: Overlapping edge unfoldings in PR(25) to PR(28) consisting of faces
{FB, f0, FT , f3, f2, f1}.

Figure A.33: Enlarged and simplified image of Figure 3.8.
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A.3 Additional drawings for the Archimedean an-
tiprisms

PA(13) PA(14)

PA(15) PA(16)

Figure A.34: Overlapping edge unfoldings in PA(13) to PA(16) consisting of faces
{f3, FB, f5, f4, FT , f0, f1, f2}.
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(a) The case for 19 ≤ n ≤ 24

(b) The case for n ≥ 25

Figure A.35: Enlarged and simplified image of Figure 3.12.





Appendix B

Detailed verification of
boundary-boundary in touch

In this chapter, we present a method to check boundary-boundary in touch using
coordinate transformations. Let’s consider a linkage, as shown in Figure B.1, where
each edge has unit length and consists of k+1 joints. We set the coordinate of p0 to
(0, 0) and label the vertices from p1 to pk. We also set the coordinate of p1 to (1, 0).
Here, the joint angles are represented as (θ1, θ2, . . . , θk−1) and range from −π to π. A
positive angle indicates counterclockwise rotation, while a negative angle indicates
clockwise rotation. For a given point p, the coordinates x(p) and y(p) denote its x
and y coordinates, respectively. The coordinates of the point pi = (x(pi), y(pi)) can
be calculated using the following equation:
⎡

⎣
x(pi)
y(pi)
1

⎤

⎦ =

⎡

⎣
cos θ1 − sin θ1 1
sin θ1 cos θ1 0
0 0 1

⎤

⎦

⎡

⎣
cos θ2 − sin θ2 1
sin θ2 cos θ2 0
0 0 1

⎤

⎦ . . .

⎡

⎣
cos θk−1 − sin θk−1 1
sin θk−1 cos θk−1 0

0 0 1

⎤

⎦

⎡

⎣
1
0
1

⎤

⎦ (B.1)

To illustrate, we consider J66-(8) as shown in Figure A.27. We label the points
counterclockwise as p0, p1, . . . , p8, as shown in Figure B.2. Here, each edge has a
length of 1 and joint angles are (θ1, θ2, θ3, θ4, θ5, θ6, θ7) =

(
−π

6 ,
11π
12 ,

π
12 ,

π
12 ,

π
12 ,

11π
12 ,−

π
6

)
.

Our goal is to confirm that the coordinate of p8 is (0, 0). Using equation (B.1), we
calculate it as follows:

⎡

⎣
x(p8)
y(p8)
1

⎤

⎦ =

⎡

⎣
cos
(
−π

6

)
− sin

(
−π

6

)
1

sin
(
−π

6

)
cos
(
−π

6

)
0

0 0 1

⎤

⎦ . . .

⎡

⎣
cos
(
−π

6

)
− sin

(
−π

6

)
1

sin
(
−π

6

)
cos
(
−π

6

)
0

0 0 1

⎤

⎦

⎡

⎣
1
0
1

⎤

⎦ =

⎡

⎣
0
0
1

⎤

⎦

Since the coordinate of p8 is (0, 0), this confirms that p0 and p8 are vertex-vertex
in touch.
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Figure B.1: Example of a linkage with arbitrary joint angles and unit edge lengths
of 1.

Figure B.2: Verifying that J66-(8) in Figure A.27 has vertex-vertex in touch.



Appendix C

Additional proofs

C.1 Proof of Claim 3.7

Proof. (The coordinates of bB0 ) Let p3 be the intersection point of the perpen-
dicular line from point tT1 to the x-axis and the perpendicular line from point tT0
to the y-axis. The coordinate of point tT0 is (−1− sin θ, 1− cos θ) since △tT1 p3t

T
0 is

a right triangle with an oblique side of length 1. Let p4 be the intersection point
of the auxiliary line drawn parallel to the y-axis with respect to point tT0 and the
auxiliary line extending the line segment bf1,f21 tT1 in the direction of tT1 , p5 be the
intersection point of the auxiliary line drawn perpendicular to the line segment tT0 b

B
0

at point tT0 and the line segment tT1 p3, and p6 be the intersection point of the per-
pendicular line from point bB0 to the x-axis and the perpendicular line from point
tT0 to the y-axis. The angle ∠tT1 tT0 p4 is θ since tT0 p4//p3t

T
1 , ∠p5tT0 tT1 is θ since it is

the exterior angle of FT , ∠p3tT0 p5 is π/2 − 2θ since ∠p3tT0 p4 is a right angle, and
∠bB0 tT0 p6 is 2θ since ∠bB0 tT0 p5 is a right angle. As a result, the coordinate of point bB0
is (−1 − sin θ + cos 2θ, 1 − cos θ − sin 2θ) since △bB0 p6t

T
0 is a right triangle with an

oblique side of length 1.

(The coordinates of bB1 ) Let p7 be the intersection point of the perpendicular
line from point bB0 to the x-axis and the perpendicular line from point bB1 to the
y-axis, and p8 be the intersection point of the auxiliary line drawn perpendicular
to the line segment tT0 b

B
0 at point bB0 and the y-axis. The angle ∠bB1 bB0 p8 is θ since

it is the exterior angle of FT , ∠p6bB0 tT0 is π/2 − 2θ since △bB0 p6t
T
0 is a right tri-

angle, ∠p8bB0 p7(= ∠p8bB0 p6) is 2θ since ∠p8bB0 tT0 is a right angle, and ∠bB1 bB0 p7 is
3θ by adding ∠bB1 bB0 p8 and ∠p8bB0 p7. As a result, the coordinate of point bB1 is
(−1 − sin θ + cos 2θ + sin 3θ, 1 − cos θ − sin 2θ + cos 3θ) since △bB1 p7b

B
0 is a right

triangle with an oblique side of length 1.

C.2 Proof of Lemma 3.6

Proof. (i) For a point p, the x and y coordinates are denoted as x(p) and y(p),
respectively. We here show that bB0 is in the third quadrant, that is, x(bB0 ) < 0 and
y(bB0 ) < 0. From Claim 3.7, x(bB0 ) = −1− sin θ + cos 2θ. Since − sin θ < − sin 0 (=
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0), cos 2θ < cos 0 (= 1) in 0 < θ ≤ 2π/29, we obtain

x(bB0 ) = −1− sin θ + cos 2θ < −1− sin 0 + cos 0 = 0.

Next we show y(bB0 ) < 0. Let a function f(θ) = 1 − cos θ − sin 2θ. We show that
f(θ) is a monotonically decreasing function in 0 < θ ≤ 2π/29, and f(0) is equal to
0. The differentiation of f(θ) yields

f ′(θ) = sin θ − 2 cos 2θ

= sin θ − 2(1− 2 sin2 θ)

= 4 sin2 θ + sin θ − 2

= 4

(
sin2 θ + sin θ +

1

64

)
− 1

16
− 2

= 4

(
sin θ +

1

8

)2

− 33

16
.

To show f ′(θ) is a monotonically increasing function in the range of θ, and f ′(2π/29)
is less than 0, we consider the second derivative of f(θ). The differentiation of f ′(θ)
yields

f ′′(θ) = 8

(
sin θ +

1

8

)
cos θ.

Since sin θ > sin 0 (= 0), cos θ > cos (2π/29) (≈ 0.97) > 0, f ′(θ) is greater than 0,
and f ′(θ) is a monotonically increasing function in the range of θ. Since f ′(2π/29) (≈
−1.60) < 0, f ′(θ) is less than 0, and f(θ) is a monotonically decreasing function.
Since f(0) = 1− cos 0− sin 0 = 0, the following equation holds.

y(bB0 ) = 1− cos θ − sin 2θ < 0

Thus, bB0 is in the third quadrant.

(ii) We here show that bB1 is in the first quadrant, that is, x(bB1 ) > 0 and y(bB1 ) > 0.
From Claim 3.7, x(bB1 ) = −1 − sin θ + cos 2θ + sin 3θ. To show x(bB1 ) > 0, let a
function f(θ) = −1 − sin θ + cos 2θ + sin 3θ, we show that f(θ) is a monotonically
increasing function for 0 < θ ≤ 2π/29, and f(0) in equal to 0. The differentiation
of f(θ) yields

f ′(θ) =
d

dθ

(
−(sin2 θ + cos2 θ)− sin θ + (cos2 θ − sin2 θ) + (3 sin θ − 4 sin3 θ)

)

=
d

dθ
(2 sin θ − 4 sin3 θ − 2 sin2 θ)

= 2 cos θ − 12 sin2 θ cos θ − 4 sin θ cos θ

= 2 cos θ(1− 6 sin2 θ − 2 sin θ).

Since 2 cos θ ≥ 2 cos (2π/29) (≈ 0.97) > 0, −6 sin2 θ ≥ −6 sin2 (2π/29) (≈ −0.27),
and −2 sin θ ≥ −2 sin (2π/29) (≈ −0.43), we obtain

f ′(θ) = 2 cos θ(1− 6 sin2 θ − 2 sin θ)

> 2 cos
2π

29

(
1− 6 sin2 2π

29
− 2 sin

2π

29

)
≈ 0.57 > 0.
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Hence, f(θ) is a monotonically increasing function in the range of θ. Since f(0) =
−1− sin 0 + cos 0 + sin 0 = 0, the following equation holds.

x(bB1 ) = −1− sin θ + cos 2θ + sin 3θ > 0

Next we show y(bB1 ) = 1 − cos θ − sin 2θ + cos 3θ > 0. Since − cos θ > − cos 0 (=
−1), − sin 2θ ≥ − sin (4π/29) (≈ −0.41), and cos 3θ ≥ cos (6π/29) (≈ 0.79) in the
range of θ, we obtain

y(bB1 ) = 1− cos θ − sin 2θ + cos 3θ

> 1− cos 0− sin
4π

29
+ cos

6π

29
≈ 0.37 > 0.

Thus, bB1 is in the first quadrant.

(iii) Let p2 be an intersection point of the perpendicular line from point bB0 to the
y-axis and y-axis; that is, the coordinates of p2 are (0, 1 − cos θ − sin 2θ). We can
show Lemma 3.6 (iii) by the following claim.

Claim C.1. The length of the line segment p2p1 is longer than that of p2b
f1
0 .

The length of the line segment bB0 p2 is not zero because of the condition (i).
To show Claim C.1, we show p2b

f1
0 /bB0 p2 is greater than p2p1/bB0 p2. p2b

f1
0 /bB0 p2 and

p2p1/bB0 p2 can denote

p2b
f1
0

bB0 p2
=

0− (1− cos θ − sin 2θ)

0− (−1− sin θ + cos 2θ)
=

−1 + cos θ + sin 2θ

1 + sin θ − cos 2θ
,

p2p1
bB0 p2

=
cos 3θ

sin 3θ
.

Therefore, we here show that the following equation holds.

−1 + cos θ + sin 2θ

1 + sin θ − cos 2θ
<

cos 3θ

sin 3θ
(C.1)

Since 1 + sin θ − cos 2θ > 1 + sin 0 − cos 0 = 0 and sin 3θ > sin 0 = 0 in the range
of θ, we can multiply both sides of equation (C.1) by (1 + sin θ − cos 2θ) sin 3θ, and
obtain

(−1 + cos θ + sin 2θ) sin 3θ < cos 3θ(1 + sin θ − cos 2θ). (C.2)

To show the equation (C.2), we subtract the right side from the left side, and we
define a function f(θ) = (−1 + cos θ + sin 2θ) sin 3θ − cos 3θ(1 + sin θ − cos 2θ). We
show that f(θ) is less than 0. Here, we partition the cases based on the value of
θ: one where θ is in the range 2π/61 < θ ≤ 2π/29, and the other where θ is in the
range 0 < θ ≤ 2π/62. When 2π/61 < θ ≤ 2π/29, we can demonstrate through a
numerical calculation for each corresponding value of n that f(θ) is less than zero1.
In the range of 0 < θ ≤ 2π/62, we differentiate the function f(θ) and use the result
to provide an analytical proof as follows.

1We use WolframScript 1.11.0 for the numerical calculations.
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The differentiation of f(θ) yields

f ′(θ) =
d

dθ
(− sin 3θ + sin 3θ cos θ + sin 3θ sin 2θ − cos 3θ − cos 3θ sin θ + cos 3θ cos 2θ)

=
d

dθ
(− sin 3θ − cos 3θ + sin 3θ cos θ − cos 3θ sin θ + sin 3θ sin 2θ + cos 3θ cos 2θ)

=
d

dθ
(− sin 3θ − cos 3θ + sin (3θ − θ) + cos (3θ − 2θ))

=
d

dθ
(− sin 3θ − cos 3θ + sin 2θ + cos θ)

= −3 cos 3θ + 3 sin 3θ + 2 cos 2θ − sin θ

= −3(4 cos3 θ − 3 cos θ) + 3(3 sin θ − 4 sin3 θ) + 2(cos2 θ − sin2 θ)− sin θ

= −12(cos3 θ − sin3 θ) + 9(cos θ + sin θ) + 2(cos2 θ − sin2 θ)− sin θ

= −12(cos θ + sin θ)(cos2 θ − cos θ sin θ + sin2 θ) + 9(cos θ + sin θ)

+ 2(cos θ + sin θ)(cos θ − sin θ)− sin θ

= −12(cos θ + sin θ)

(
1− 1

2
sin 2θ

)
+ 9(cos θ + sin θ)

+ 2(cos θ + sin θ)(cos θ − sin θ)− sin θ

= (cos θ + sin θ)(−12 + 6 sin 2θ + 9 + 2 cos θ − 2 sin θ)− sin θ

= sin
(
θ +

π

4

)
(6 sin 2θ + 2 cos θ − 2 sin θ − 3)− sin θ.

Let a function g(θ) = 6 sin 2θ+2 cos θ− 2 sin θ− 3. Since sin (θ + π/4) > sin π/4 (≈
0.71) > 0, and sin θ < sin 0 (= 0), if g(θ) is less than 0, we can say f ′(θ) < 0. We
show that g(θ) is a monotonically increasing function in 0 < θ ≤ 2π/62, g(2π/62)
is less than 0. The differentiation of g(θ) yields

g′(θ) = 12 cos 2θ − 2 sin θ − 2 cos θ

= 12 cos 2θ − 2(sin θ + cos θ)

= 12 cos 2θ − 2
√
2 sin

(
θ +

π

4

)
.

To show g′(θ) is a monotonically decreasing function in the range of θ, and g′(2π/62)
is greater than 0, we consider the second derivative of g(θ). The differentiation of
g′(θ) yields

g′′(θ) = −24 sin 2θ − 2
√
2 cos

(
θ +

π

4

)
.

Since sin 2θ > sin 0 (= 0), cos (θ + π/4) > cos (2π/62 + π/4) (≈ 0.88), g′′(θ) is less
than 0, and g′(θ) is a monotonically decreasing function in the range of θ. Since
g′(2π/62) ≈ 9.56, g′(θ) is greater than 0, and g(θ) is a monotonically increasing
function. Since g(2π/62) ≈ −0.004, the following equation holds.

g(θ) = 6 sin 2θ + 2 cos θ − 2 sin θ − 3 < 0

Therefore, f ′(θ) is less than 0, and f(θ) is a monotonically decreasing function in
0 < θ ≤ 2π/62. Since f(0) = (−1 + cos 0 + sin 0) sin 0 − cos 0(1 + sin 0− cos0) = 0,
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the following equation is hold.

f(θ) = (−1 + cos θ + sin 2θ) sin 3θ − cos 3θ(1 + sin θ − cos 2θ) < 0

Thus, the length of the line segment p2p1 is longer than that of p2b
f1
0 .

C.3 Proof of Claim 3.11

Proof. (The coordinates of bB1 ) Let p2 be the intersection point of the perpendic-
ular line from point bB1 to the x-axis, and p3 be the intersection point of the auxiliary
line extending the line segment tT2 t

T
1 in the tT1 direction and the line segment tT0 b

B
1 .

The angle ∠p3tT1 bB1 is π/3 − θ since ∠tT0 tT1 bB1 is π/3, and the ∠bB1 tT1 p2 is θ since
∠p3tT1 p2 is π/3. As a result, the coordinate of point bB1 is (−1 + cos θ,− sin θ) since
△bB1 p2t

T
1 is a right triangle with an oblique side of length 1.

(The coordinates of bB2 ) Let p4 be the intersection point of the perpendicular line
from point bB2 to the y-axis and the perpendicular line from point bB1 to the x-axis,
p5 be the intersection point of the auxiliary line extending the line segment bB2 b

B
1 in

the bB1 direction and the line segment tT0 b
B
0 , and p6 be the intersection point of the

auxiliary line extending the line segment bB0 b
B
1 in the bB1 direction and the x-axis.

The angle ∠bB2 bB1 p4 is divided into two cases concerning the value of n.

[For 19 ≤ n ≤ 24] The angle ∠tT0 bB1 p5 is π/3−θ since ∠p5bB1 bB0 is the exterior angle of
FB, ∠p2bB1 tT1 is π/2−θ since△bB1 p2t

T
1 is a right triangle, and ∠bB2 bB1 p4 is 2θ−π/6 since

∠p5bB1 bB2 −∠tT0 bB1 p5+∠tT1 bB1 tT0 +∠p2bB1 tT1 = π−(π/3−θ)+π/3+(π/2−θ) = 2θ−π/6.
As a result, the coordinate of point bB2 is (−1 + cos θ + sin (2θ − π/6),− sin θ + cos (2θ − π/6))
since △bB2 p4b

B
1 is a right triangle with an oblique side of length 1.

[For n ≥ 25] The angle ∠bB2 bB1 tT1 is π/3+ θ since ∠p6bB1 tT1 +∠p1bB1 p6 = π/3+ θ, and
∠p4bB1 bB2 is π/6−2θ since ∠p2bB1 tT1 −∠tT1 bB1 bB2 = π/2−θ−(π/3+θ) = π/6−2θ. As a
result, the coordinate of point bB2 is (−1 + cos θ − sin (π/6− 2θ),− sin θ + cos (π/6− 2θ))
since△bB1 p4b

B
2 is a right triangle with an oblique side of length 1. Since − sin (π/6− 2θ) =

sin (2θ − π/6), and cos (π/6− 2θ) = cos (2θ − π/6), the coordinate of point bB2 can
be transformed into (−1 + cos θ + sin (2θ − π/6),− sin θ + cos (2θ − π/6)).

(The coordinates of p1) The equation of the line with points bB1 and bB2 is

y =
y(bB2 )− y(bB1 )

x(bB2 )− x(bB1 )
(x−x(bB1 ))+y(bB1 ) =

cos
(
2θ − π

6

)

sin
(
2θ − π

6

) (x−(−1+cos θ))−sin θ. (C.3)



114 C.4. PROOF OF LEMMA 3.10

Here, by substituting y = y(p1) = 0 into the equation (C.3), we get

x(p1) = (y(p1) + sin θ)
sin
(
2θ − π

6

)

cos
(
2θ − π

6

) − 1 + cos θ

=
sin θ sin

(
2θ − π

6

)

cos
(
2θ − π

6

) + cos θ − 1

=
sin θ sin

(
2θ − π

6

)
+ cos θ cos

(
2θ − π

6

)

cos
(
2θ − π

6

) − 1

=
cos
(
θ −

(
2θ − π

6

))

cos
(
2θ − π

6

) − 1

=
cos
(
π
6 − θ

)

cos
(
2θ − π

6

) − 1.

C.4 Proof of Lemma 3.10

Proof. (i) We here show that bB1 is in the third quadrant, that is, x(bB1 ) < 0 and
y(bB1 ) < 0. From Claim 3.11 x(bB1 ) = −1 + cos θ. Since cos θ < cos 0 (= 1) from the
range of θ, we obtain

x(bB1 ) < −1 + cos 0 = 0.

From Claim 3.11 y(bB1 ) = − sin θ. Since − sin θ < − sin 0 (= 0), y(bB1 ) < 0. Thus,
bB1 is in the third quadrant.

(ii) We here show that the y-coordinate of point bB2 is positive, that is, y(bB2 ) > 0.
From Claim 3.11 y(bB2 ) = − sin θ + cos (2θ − π/6). Since − sin θ ≥ − sin 2π/19(≈
−0.32), cos 2θ ≥ cos 4π/19(≈ 0.78), and sin 2θ ≥ sin 0(= 0) from the range of θ, we
obtain

y(bB2 ) = − sin θ + cos
(
2θ − π

6

)

= − sin θ + cos 2θ cos
π

6
+ sin 2θ sin

π

6

> − sin
2π

19
+

√
3

2
cos

4π

19
+

1

2
sin 0 ≈ 0.35 > 0.

Thus, y(bB2 ) is positive.

(iii) We here show that the x-coordinate of point p1 is greater than −1 and less than
0, that is, x(p1) > −1 and x(p1) < 0. From Claim 3.11 x(p1) = cos (π/6− θ)/ cos (2θ − π/6)−
1. First, we show x(p1) > −1, that is, cos (π/6− θ)/ cos (2θ − π/6) > 0. Since the
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following inequalities hold:

0 <
π

6
− 2π

19

(
=

7π

114

)
≤ π

6
− θ <

π

6
− 0

(
=

π

6

)
<

π

2

−π

2
< 0− π

6

(
= −π

6

)
< 2θ − π

6
≤ 2 · 2π

19
− π

6

(
=

5π

114

)
<

π

2
,

we obtain
cos
(π
6
− θ
)
> 0 cos

(
2θ − π

6

)
> 0. (C.4)

Thus, x(p1) > −1.
Next, we show x(p1) < 0, that is,

cos
(
π
6 − θ

)

cos
(
2θ − π

6

) − 1 < 0. (C.5)

Since cos
(
2θ − π

6

)
> 0 according to equation (C.4), by multiplying both sides of

equation (C.5) by cos
(
2θ − π

6

)
, we obtain

cos
(π
6
− θ
)
− cos

(
2θ − π

6

)
< 0.

We define a function f(θ) = cos (π/6− θ)− cos (2θ − π/6). We show that f(θ) is a
concave down function from 0 < θ ≤ 2π/19, and both f(0) and f(2π/19) are less
than 0. The differentiation of f(θ) yields

f ′(θ) = sin
(π
6
− θ
)
+ 2 sin

(
2θ − π

6

)
.

To show f ′(θ) is a monotonically increasing function, f ′(0) is less than 0, and
f ′(2π/19) is larger than 0, we consider the second derivative of f(θ). The dif-
ferentiation of f ′(θ) yields

f ′′(θ) = − cos
(π
6
− θ
)
+ 4 cos

(
2θ − π

6

)

= − cos
π

6
cos θ − sin

π

6
sin θ + 4 cos 2θ cos

π

6
+ 4 sin 2θ sin

π

6

= −
√
3

2
cos θ − 1

2
sin θ + 2

√
3 cos 2θ + 2 sin 2θ

= −
√
3

2
cos θ − 1

2
sin θ + 2

√
3 cos2 θ − 2

√
3 sin2 θ + 4 sin θ cos θ

= sin θ

(
4 cos θ − 2

√
3 sin θ − 1

2

)
+ cos θ

(
2
√
3 cos θ −

√
3

2

)
.

Since 4 cos θ < 4 cos (2π/19) (≈ 3.78), −2
√
3 sin θ < −2

√
3 sin (2π/19) (≈ −1.12),

and 2
√
3 cos θ > 2

√
3 cos (2π/19) (≈ 3.27), we obtain

4 cos θ − 2
√
3 sin θ − 1/2 ≈ 2.15 > 0

2
√
3 cos θ −

√
3

2
≈ 2.40 > 0.
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Hence, f ′′(θ) > 0 and f ′(θ) is a monotonically increasing function. Since f ′(0) =
sin (π/6)+2 sin (−π/6) = −0.5 < 0 and f ′(2π/19) = sin (2π/19− π/6)+2 sin (4π/19− π/6) ≈
0.46 > 0, f(θ) is a concave down function. Herein, f(0) = cos (π/6)− cos (−π/6) =
0, and f(2π/19) = cos (π/6− 2π/19) − cos (4π/19− π/6) ≈ −0.009, f(θ) < 0.
Thus, x(p1) < 0.
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