FY2024 Ph.D. Degree Thesis

Overlapping and Non-overlapping
Unfoldings in Convex Polyhedra

Takumi SHIOTA

237G0001

Supervisor : Professor Toshiki Saitoh

Division of Artificial Intelligence
Department of Creative Informatics
Graduate School of Computer Science and Systems Engineering
Kyushu Institute of Technology

December 2024






Absrtact

An unfolding of a polyhedron is a flat polygon obtained by cutting along the poly-
hedron’s cutting lines and flattening its faces onto a plane. The origin of unfoldings
can be traced back to Albrecht Diirer’s work in 1525. Depending on the shape of the
polyhedron and the method of unfolding, the resulting shape may overlap, where
two distinct faces intersect on the plane, or their boundaries are in touch. When the
cutting lines are restricted to the edges of the polyhedron, the unfolding is called an
edge unfolding. Shephard proposed the conjecture that for any convex polyhedron,
at least one non-overlapping edge unfolding exists; however, this conjecture remains
unsolved.

To solve this conjecture, some studies are ongoing. Horiyama et al. showed that
the edge unfoldings of Platonic solids and five types of Archimedean solids do not
have overlaps. On the other hand, overlapping edge unfoldings have been found
for five other types of Archimedean solids. There remains the problem of whether
overlapping edge unfoldings exist for other convex regular-faced polyhedra, such as
the snub cube, icosidodecahedron, rhombitruncated cuboctahedron, Archimedean
prisms, Archimedean antiprisms, and Johnson solids.

For cuboids, when the cutting lines are aligned with the unit squares on the faces,
the unfolding is called a lattice unfolding. Uno showed that the lattice unfolding of
a 1 x 1 x z cuboid, where z > 3, has overlapping lattice unfoldings, and Mitani et al.
showed an overlapping lattice unfolding for an = x y X z cuboid with x > 1,y > 2,
and z > 3. Conversely, Hearn showed that the lattice unfolding of a 1 x 1 x 2 cuboid
does not overlap, and Sugihara demonstrated the same for a 2 x 2 x 2 cuboid.
However, determining the conditions under which overlapping lattice unfoldings
exist for cuboids with diagonal lattice cutting lines remains an open problem.

In this study, we address two main problems. The first problem is determining
whether a given polyhedron has overlapping unfoldings. The second problem is
counting the number of overlapping and non-overlapping unfoldings when a given
polyhedron has overlapping unfoldings.

For the first problem, we introduce an algorithm called rotational unfolding,
which efficiently determines whether overlapping unfoldings exist for a given poly-
hedron. The basic principle of our method is similar to the rolling and unfolding
method proposed by DeSplinter et al., but it is extended to n-gons by proposing
pruning techniques that use a polyhedron’s distance properties and symmetry. Us-
ing this algorithm, we show the existence of overlapping unfoldings for both edge
unfoldings of convex regular-faced polyhedra and lattice unfoldings of cuboids. As a
result, we solve the problem of whether overlapping edge unfoldings exist for convex
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regular-faced polyhedra and present the conditions for overlapping lattice unfoldings
in cuboids with diagonal lattice cutting lines.

For the second problem, we propose an algorithm to count non-overlapping un-
foldings in polyhedra that have overlapping unfoldings. The algorithm first enumer-
ates the minimal overlapping partial unfoldings (MOPUs), which are the minimal
units of edge unfoldings with overlaps. Then, we construct a zero-suppressed binary
decision diagram (ZDD) representing non-overlapping unfoldings by subtracting the
ZDDs of overlapping edge unfoldings containing the MOPUs from the ZDD repre-
senting all edge unfoldings. By applying this algorithm, we calculate the number
of non-overlapping edge unfoldings for several convex regular-faced polyhedra and
lattice unfoldings of cuboids. These results provide partial answers to the problems
of counting overlapping and non-overlapping unfoldings for given polyhedra.
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Chapter 1

Introduction

An unfolding of a polyhedron is a flat polygon obtained by cutting along the polyhe-
dron’s cutting lines and unfolding the polygon onto a plane. The origin of unfoldings
is recognized as the illustrations found in Albrecht Diirer’s “Underweysung der mes-
sung mit dem zirckel un richt scheyt” [Diir25], published in 1525 [DOO07]. However,
depending on the shape of the polyhedron and how it is unfolded, unfoldings can
sometimes result in overlapping polygons, i.e., two distinct faces overlap, or their
boundaries are in touch (see Figure 1.1). If we restrict the cutting lines to the edges
of the polyhedron, the unfolding is called an edge unfolding. Shephard proposed the
following conjecture about edge unfoldings.

Conjecture 1.1 ( [She75]). For any convex polyhedron, at least one non-overlapping
edge unfolding exists.

This conjecture is still unsolved, and some studies to solve it are ongoing. One
such study is determining whether an overlapping edge unfolding exists for a given
polyhedron. Biedl et al. in 1998 and Griinbaum in 2003 showed that there exist non-
convex polyhedra whose every edge unfolding overlaps [BDD 98, Grii03]. Schlick-
enrieder showed that n-gonal prisms have overlapping edge unfoldings, as shown in
Figure 1.2. There are some results for convex regular-faced polyhedra, which are
polyhedra with no concave regions and are composed entirely of regular polygons
(see Table 1.1). This is because focusing on simpler structures is a natural starting
point. When we deal with simpler structures, the algorithms become easier to imple-
ment, and it is simpler to check whether the approach works. Once these basic cases
are well understood, they can serve as foundational ideas for developing algorithms
that handle more complex structures. Horiyama and Shoji presented an algorithm
for enumerating overlapping edge unfoldings of polyhedra, and they also showed
that Platonic solids do not have any overlapping edge unfoldings [HS11]. Their al-
gorithm first enumerates edge unfoldings, which are represented as spanning trees
of a polyhedral graph, using binary decision diagrams (BDDs) and then checks the
overlapping by numerical calculations for each unfolding. Additionally, a truncated
dodecahedron, truncated icosahedron, rhombicosidodecahedron, rhombitruncated
icosidodecahedron, and a snub dodecahedron (all of which are Archimedean solids,
see Figure 1.3) are known to have overlapping edge unfoldings [CFG91,HS11]. Hi-
rose showed that five shapes of Archimedean solids do not have overlapping edge

1



(a) 12-gonal prism (b) 15-gonal prism

Figure 1.2: Overlapping edge unfoldings for n-gonal prisms.

unfoldings by enumerating paths between two faces of the polyhedron and check-
ing whether those paths have any overlaps [Hirl5]. On the other hand, for edge
unfoldings of convex regular-faced polyhedra, the following problem remains:

Problem 1.2 (see Table 1.1). Do three types of Archimedean solids (a snub cube,
an icosidodecahedron, or a rhombitruncated cuboctahedron), n-gonal Archimedean
prisms, m-gonal Archimedean antiprisms, and Johnson solids have overlapping edge
unfoldings?

There are also some results for higher-dimensional polyhedra. DeSplinter et al.
recently showed that the edge unfoldings of high-dimensional cubes and demon-
strated that a spanning tree of a Roberts graph can represent an edge unfold-
ing [DDRW20]. They proposed a rolling and unfolding method, where the cubes
are rotated along a spanning tree and the edges are cut to avoid overlap.

There are studies on general unfoldings that allow cutting the faces of the
polyhedron, not just its edges. Sharir et al. in 1986 and Aronov et al. in 1992
showed a method for the general unfolding of any convex polyhedron without over-
laps [SS86,A092]. Thus, there is a gap between edge unfoldings and general unfold-
ings. Bridging this gap is necessary as a foothold on Conjecture 1.1. There are also
general unfoldings where we can cut only along specific candidate lines drawn on the
faces. One such example is the pseudo-edge unfolding, where the vertices correspond
to the original vertices of the polyhedron, the edges are distance-minimizing geodesic
paths between pairs of vertices, and the unfolding requires cuts along the shortest
paths for each pair of vertices. Barvinok and Ghomi showed an example of a convex
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Table 1.1: Overlapping edge unfoldings for convex regular-faced polyhedra.

] Convex regular-faced polyhedra H Is there an overlapping edge unfolding? ‘
Platonic solids (Total 5 types) No [HS11]
No (5 types) [Hirl5]
Archimedean solids (Total 13 types) Yes (5 types) [CFG91, HS11]
Open (3 types)
Johnson solids (Total 92 types) Open
n-gonal Archimedean prisms (n > 3) Open
m-gonal Archimedean antiprisms (m > 3) Open

(d) Rhombitruncated
icosidodecahedron

(c) Rhombicosidodecahedron

Figure 1.3: Examples of overlapping edge unfoldings in Archimedean solids [HS11].
The right edge unfolding can be obtained by cutting along the thick line of the left
polyhedron.

polyhedron that does not have a non-overlapping pseudo-edge unfolding [BG20].
Another example is the lattice unfolding of a cuboid formed by connecting multiple
1 x 1 x 1-cubes. In lattice unfolding, we cut along the edges of the lattice formed
by unit squares. In 2008, Uno showed that a 1 x 1 x 3 cuboid, and Mitani et al.
showed that an 1 x 2 x 3 cuboid have overlapping lattice unfoldings, as shown in Fig-
ure 1.4 [Uno08,MUO08]. Additionally, each of these cutting methods can be extended
to the 1 x 1 x 2z cuboid where z > 3 and the x x y X z cuboid where x > 1, y > 2
and z > 3, respectively. The following theorems are obtained:

Theorem 1.3 ( [Uno08]). The 1 x 1 x z cuboid, where z € N and z > 3, has an
overlapping lattice unfolding.

Theorem 1.4 ( [MUO0S8]). The x X y X z cuboid, where x,y,z € N, z > 1, y >
2, z>3, and x < y < z, has an overlapping lattice unfolding.
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(a) 1 x 1 x 3 cuboid. (b) 1 x 2 x 3 cuboid.
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Figure 1.4: Examples of overlapping lattice unfoldings for cuboids.
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Figure 1.5: An example of a cuboid with diagonal lattice cutting lines. Solid lines
are cutting lines, and dashed lines are non-cutting lines. Cut along the thick lines
on the left cuboid to obtain the lattice unfolding on the right.

On the other hand, the following results are known for the non-existence of
overlapping lattice unfolding:

Theorem 1.5 ( [Heal8]). The 1 x 1 x 2 cuboid has no overlapping lattice unfolding.
Theorem 1.6 ( [Sugl8]). The 2 x 2 x 2 cuboid has no overlapping lattice unfolding.

Furthermore, cutting lines can be taken not only parallel to the edges of the
cuboid but also diagonally, as shown in Figure 1.5. Thus, when considering cutting
lines that can also be diagonal, we can consider the following problem:

Problem 1.7. For cuboids with diagonal lattice cutting lines, what are the conditions
for overlapping unfoldings?

There are studies on counting the number of unfoldings. The number of edge
unfoldings (including those with overlaps) is known to be equal to the number of
spanning trees formed by the cutting edges of the polyhedron. Similarly, the num-
ber of lattice unfoldings (including those with overlaps) corresponds to the number
of Steiner trees that satisfy specific conditions on the cutting lines of the polyhe-
dron [MUO8]. We can count the number of spanning trees using Kirchhoft’s theo-
rem [Lew82|. Additionally, both spanning trees and Steiner trees can be efficiently
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Figure 1.6: Schevon’s experiment on randomly generated convex polyhedra. Each
point represents the average percentage of non-overlapping edge unfoldings for five
randomly generated convex polyhedra. The percentage is the proportion of overlap-
ping unfoldings among 1000 randomly selected edge unfoldings for each polyhedron.

counted using a data structure called binary decision diagrams (BDDs) [Bry86]
or zero-suppressed binary decision diagrams (ZDDs) [Min93]. BDDs/ZDDs are
compact data structures for representing families of sets and support algebraic
operations on these families (i.e., union, intersection, and set difference). Ad-
ditionally, BDDs/ZDDs allow for counting, enumeration, and extraction of opti-
mal families of sets. BDDs/ZDDs are used to enumerate specific structures on
graphs [KIIM17]. Horiyama et al. used BDDs/ZDDs to enumerate spanning trees
and count the number of edge unfoldings for convex regular-faced polyhedra [HS13,
HMS18]. Horiyama and Shoji proposed a method for counting the number of non-
overlapping edge unfoldings for Platonic solids by extracting each spanning tree one
by one from BDDs [HS11]. However, this method only applies to the polyhedra with
few edge unfoldings. For example, the truncated icosahedron (Figure 1.3 (b)) has
375,291, 866, 372, 898, 816,000 (approximately 3.75 x 10?Y) edge unfoldings [HS13],
so checking each unfolding one by one would take over ten thousand years with
current computers. Based on this, Schevon adopted a method of randomly selecting
edge unfoldings [Sch89]. She showed that for randomly generated convex polyhe-
dra, the percentage of non-overlapping edge unfoldings decreases as the number
of vertices increases, as shown in Figure 1.6. On the other hand, when a polyhe-
dron has overlapping unfoldings, the exact number of overlapping / non-overlapping
unfoldings is not known. Therefore, we can consider the following two problems.

Problem 1.8. Given a convex reqular-faced polyhedron with overlapping edge un-
foldings, how many overlapping / non-overlapping unfoldings are there?

Problem 1.9. Given a cuboid with overlapping lattice unfoldings, how many over-
lapping / non-overlapping lattice unfoldings are there?



Our Contributions In this study, we addressed two problems. The first problem
is to determine whether a given polyhedron has overlapping unfoldings. The second
problem is counting the number of overlapping and non-overlapping unfoldings when
a given polyhedron has overlapping unfoldings.

For the first problem, we propose a method for determining an overlapping edge
unfolding called rotational unfolding for a polyhedron. The basic principle of our
method is similar to that of the rolling and unfolding method. First, a polyhedron
is placed on a plane, and the following three steps are performed repeatedly: cutting
the bottom edges, rotating the polyhedron in the plane, and searching for overlap-
ping edge unfoldings. The rolling and unfolding method is suitable for determining
edge unfoldings for high-dimensional cubes but is not applicable to general shapes.
Therefore, we extend the method to n-gons by proposing pruning techniques in
the rotational unfolding that use a polyhedron’s distance property and symmetry
to determine overlapping unfoldings efficiently. As a result, we solve Problem 1.2,
proving the existence of overlapping edge unfoldings for convex regular-faced poly-
hedra. Additionally, by extending the rotational unfolding to the lattice unfolding
of cuboids, we also present the conditions for Problem 1.7.

For the second problem, we propose an enumeration algorithm for counting non-
overlapping unfoldings in a given polyhedron using ZDDs and their operations. The
algorithm first enumerates the minimal overlapping partial unfoldings (MOPUs),
which are the minimal units of edge unfoldings with overlaps (the gray faces in Fig-
ure 1.1 correspond to this). Next, we construct a ZDD representing non-overlapping
unfoldings by subtracting the ZDDs of overlapping edge unfoldings containing the
MOPUs from the ZDD representing all edge unfoldings. We apply this algorithm
to the edge unfoldings of convex regular-faced polyhedra and the lattice unfoldings
of cuboids, counting the number of non-overlapping unfoldings for various convex
polyhedra. These results provide partial answers to Problems 1.8 and 1.9.



Chapter 2

Preliminaries

2.1 Graph

Let G = (V, E) be a simple graph where V' is a set of vertices and £ C V x V is a
set of edges. A sequence of vertices (vy,...,vy) is a path if v; # v; (v;, v; €V, 1<
i # j < k) and every consecutive two vertices are adjacent. A graph is connected
if a path exists between any two vertices of the graph. If a graph T' = (Vp, Er) is
connected and |Er| = |Vr| — 1, the graph is called a tree. A tree T'= (Vp, Er) is a
spanning tree of G if Vo =V and Er C E. For a subset of vertices V' C V in graph
G, the graph G[V'] = (V' {(p,q) | p,q € V" and (p,q) € E}) is called the subgraph
induced by V.

2.2 Convex regular-faced polyhedron

A polyhedron is a three-dimensional object consisting of at least four polygons,
called faces, joined at their edges. A convex polyhedron is a polyhedron with the
interior angles of all two faces less than 7. A convex regular-faced polyhedron is
a convex polyhedron with all faces being regular polygon. A Platonic solid is a
convex regular-faced polyhedron with faces composed of congruent regular polygons.
An n prism is a polyhedron composed of two identical n-sided polygons, called
bases, facing each other, and n parallelograms, called side faces, connecting the
corresponding edges of the two bases. An n antiprism is a polyhedron composed of
two bases of congruent n-sided polygons and 2n-sided alternating triangles. An n-
gonal (anti)prism is an n (anti)prism if the bases are n-sided regular polygons and an
n-gonal Archimedean (anti)prism is an n-gonal (anti)prism if it is a convex regular-
faced polyhedron (i.e., the side faces are also regular). An Archimedean solid is a
convex regular-faced polyhedron composed of regular polygons with the same type
and order of regular polygons gathered at the vertices, except for Platonic solids, and
Archimedean (anti)prisms. A Johnson solid is a convex regular-faced polyhedron,
except Platonic solids, Archimedean solids, and Archimedean (anti)prisms. It is
known that there are 92 Johnson solids [Joh66].

7
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2.3 Edge unfolding

Let @ be a polyhedron. An unfolding (also called a net, a development, or a general
unfolding) of the polyhedron @ is a flat polygon formed by cutting @’s edges or
faces and unfolding it into a plane. An edge unfolding of ) is an unfolding formed
by cutting only edges. ) can be viewed as a graph Gg = (Vg, Eg), where Vj is a
set of vertices and Ej is a set of edges. We have the following lemma for an edge
unfolding of Q.

Lemma 2.1 (see e.g., [DO07] Lemma 22.1.1). The cut edges of an edge unfolding
for Q form a spanning tree of Gg.

This lemma implies that counting the spanning trees of @) is equal to counting
the edge unfoldings of (). Two faces in @) are neighbors if they contain a common
edge. The dual graph of a polyhedron @ is a graph Gp = (Vp, Ep), where each
vertex in Vp corresponds to a face of (), and two vertices are connected by an edge
in Fp if and only if the corresponding faces are adjacent. A spanning tree of the
dual graph of @ can also be considered an edge unfolding [Sch97]. A partial edge
unfolding is a flat polygon consisting of a set of faces that correspond to a connected
induced subgraph of Gp.

We say that two distinct polygons overlap if there exists a point p contained in
both of the two polygons. Note that any point on a boundary is included in the
polygons in this paper. That is, the polygons overlap if they are in contact on the
boundaries. An unfolding is overlapping if there exists a pair of distinct faces such
that the faces overlap. The following proposition is used to determine whether an
edge unfolding of a polyhedron @ is overlapping.

Proposition 2.2 ( [HS11]). If the circumscribed circles of the two faces do not
overlap for any two faces in an edge unfolding, then the edge unfolding is not over-

lapping.

This proposition is useful for efficiently checking the overlapping of an edge
unfolding, and it is a necessary condition for overlapping edge unfoldings. If the
circumscribed circles of two faces of () intersect, we use numerical calculations to
check the overlapping.

A minimal partial overlapping edge unfolding (MOPE) is a path-like partial edge
unfolding that consists of faces along any path between two vertices in an induced
subgraph of GG p, with overlapping faces at the two end vertices. Note that “minimal”
means that removing any additional faces would make the unfolding lose its path-like
structure; it does not imply that the unfolding has the smallest possible number of
faces. Figure 2.1 shows examples of MOPEs and non-MOPE partial edge unfoldings.

One method for counting spanning trees in a graph is using a Zero-suppressed
Decision Diagram (ZDD). A ZDD is a data structure that represent families of sets
compactly as a directed acyclic graph. In a ZDD, there are two types of nodes:
terminal nodes with the out-degree zero T, L, and branching nodes. Branching
nodes are labeled by elements of the set, and each has two outgoing edges: a 1-
edge and a 0-edge. The 1-edge means the inclusion of the labeled element, while
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Figure 2.1: Examples of MOPEs and non-MOPEs in Johnson solid J21. In (a)
and (c), they are MOPESs because removing any additional faces would make them
disconnected. In (b) and (d), removing the gray faces results in MOPEs.

(a)

¢ —e o¢—o¢ (b €)
0.~ AL
(Y e (Y S
i - 1 ——4o o——o 0 0
{eg.e,6,} {eg.e,,e5} """"
61 82 0 2 0 3 1 0
V. €5 U el
2 3 3

oy ey

Figure 2.2: (a) An example of the graph C, and its spanning trees. (b) A ZDD
representing the spanning trees of C}. Circles represent branching nodes, labels are
inside the circles, solid lines represent 1-edges, and dashed lines represent 0-edges.
A path from the root node (labeled e) following a 1-edge, a 1-edge, a 0-edge, and
a l-edge leading to T means that the set {eg, e1,e3} forms a spanning tree.

the 0-edge means the exclusion of the element. In a ZDD, there is a root node
with no incoming edges. Figure 2.2 shows an example of the ZDD representing a
spanning tree. ZDDs have some operations, such as union, intersection, and set
difference. Additionally, ZDDs allow for counting, enumeration, and extraction of
optimal families of sets [Min93].

2.4 Lattice cuboid

Let’s consider a square lattice where each square has an area of 1 x 1. Suppose
A = (a,0) and B = (0,b) are a pair of lattice points, where a € N*, b € N, a > b, as
shown in Figure 2.3. Consider a square with side AB, whose length is L = v/a? + b2.
A cube with a side length of L is constructed by assembling squares as its faces (an
example is shown in Figure 2.4).

An (zL,yL,zL)-cuboid is defined as a box with edge lengths xL, yL, and
zL along the z-axis, the y-axis, and the z-axis, respectively, where z,y,z € Z*
(an example is shown in Figure 2.5). Here, z < y < z is assumed without
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Figure 2.4: A cube with a side of length v/10 (a = 3, b = 1).

loss of generality. We only consider the cuboids that satisfy ged(a,b) = 1 be-
cause the (c(zL),c(yL),c(zL))-cuboid (multiplied (zL,yL,zL)-cuboid by ¢) and
the (z(cL),y(cL),z(cL))-cuboid (multiplied (cL,cL,cL)-cuboid by z,y,z) can be
regarded as the same shape (see Figure 2.6).

2.5 Lattice unfolding

A lattice unfolding of a cuboid C' is a planar shape obtained by cutting along the
edges of unit squares on the faces of the cuboid. C' can be viewed as a graph
Go = (Vo, Ec), where Vi is a set of vertices and E¢ is a set of edges of C. We have
the following lemma for a lattice unfolding of C.

Lemma 2.3 ( [MUO8] Theorem 1, Theorem 3, and Figure 2.8). Let S(Ve) C Vi be
the set of lattice points located at the vertices of C'. Then, the following are equivalent
for a subgraph Gy C G¢:

(1) A lattice unfolding can be obtained by cutting along G,.

(2) Gy is a tree that satisfies S(Vo) C G, and for any vertez v in Gy, if the degree
of vertex v is 1, then v € S(V¢).

Figure 2.5: A (3+/10,2v/10, v/10)-cuboid obtained by assembling six units of the
cube shown in Figure 2.4 (x =3, y =2, z =1).
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(a) a=b=1, ged(a,b) =1, (b) a=0b=2, ged(a,b) =2,
L=V2,c=y=2=2 L=2V2,z=y=2=1

Figure 2.6: Two (2\/5, 2\/5, 2\/5)—cuboids that can be regarded as the same shape.
This paper focuses only on (a).

Figure 2.7: An example of a lattice unfolding of a (1/10,2+/10, 3y/10)-cuboid (Fig-
ure 2.5). Note that dotted lines are fold lines and not cutting lines.

The dual graph of a cuboid C' can be viewed as a graph Gpc = (Vpe, Epc),
where each vertex in Vpe corresponds to a unit square of C' and two vertices are
connected by an edge in Epq if and only if the corresponding unit squares are
adjacent. A partial lattice unfolding is a flat polygon consisting of a set of faces that
correspond to a connected induced subgraph of Gp¢.

In a lattice unfolding, the original cuboid’s unit squares are arranged on a plane,
with their edges connected. The relationship between any pair of unit squares that
are not adjacent on the original cuboid is classified as follows:

(1) Overlap in the same position (Figure 2.9 (a)).

Figure 2.8: An example of a cutting line in a (3, 3, 3)-cuboid. The cutting line forms
a tree that includes all eight lattice cuboid vertices (the starred ones).
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(2) Share one edge (Figure 2.9 (b)).
(3) Share one vertex (Figure 2.9 (c)).
(4) Do not share any edges or vertices.

Herein, we say that a lattice unfolding is faces-in-touch if it has a pair of unit
squares satisfying (1). Similarly, we define edges-in-touch and vertices-in-touch for
conditions (2) and (3), respectively. When all pairs of unit squares that are not adja-
cent on the original cuboid satisfy condition (4), we say the lattice unfolding is non-
overlapping. Conversely, if any of the conditions (1), (2), or (3) is satisfied, we say
the lattice unfolding is overlapping. Note that for any cuboid, the following inclusion
relationship holds: {faces-in-touch unfoldings} C {edges-in-touch unfoldings} C
{vertices-in-touch unfoldings}.

A minimal partial overlapping lattice unfolding (MOPL) is a path-like partial
lattice unfolding that consists of faces along any path between two vertices in an
induced subgraph of G p¢, with overlapping faces at the two end vertices. Figure 2.10
shows examples of MOPLs and non-MOPL partial lattice unfoldings.
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Figure 2.9: Overlapping lattice unfolding in the (1,2, 3)-cuboid [MUOS].
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Figure 2.10: Example of an MOPL and a non-MOPL in a (1,2, 5)-cuboid. In (a), it
is an MOPL because removing any additional faces would make them disconnected.

I

J

L

M

F

E

D

QI K

In (b), removing faces L and M results in a MOPL.






Chapter 3

Overlapping unfolding for convex
polyhedra

3.1 Rotational unfolding

In this section, we first propose an algorithm for detecting overlapping edge un-
foldings for a polyhedron (). A spanning tree T'(U) of the dual graph Gp of @
represents an edge unfolding U. We can determine all overlapping edge unfoldings
by enumerating all spanning trees of Gp and then checking the overlapping of the
corresponding unfoldings. However, a polyhedron generally contains a large number
of spanning trees. Our algorithm employs Lemma 3.1 to enumerate the paths rather
than the spanning trees to efficiently search for overlapping edge unfoldings.

Lemma 3.1 ( [DDRW20, Hirl5]). Let U be an overlapping edge unfolding of a
polyhedron @Q, and T(U) be a spanning tree corresponding to U in the dual graph
Gp. If two nodes n,n’ € T(U) correspond to overlapping faces in U, then the path
fromn ton' in T(U) represents a consecutive sequence of overlapping faces in U.

For a polyhedron (), we present a simple and recursive procedure called rotational
unfolding to find paths and check their overlap. In this procedure, we first place @)
in the plane. The start face f, of () is the bottom face. We rotate ) and unfold
the current bottom in the rotational unfolding. Let f, be the current bottom face,
called the last face. In the first step of the procedure, f, is the start face fs;. The
rotational unfolding first checks whether there exists a neighbor face of f, in Q.
Then, for each neighbor face f, we run the following three steps: we cut the edges
of f, except for the edge sharing f, roll the polyhedron @) to be the bottom f, and
check the overlap between fs; and f. To check the overlapping of edge unfoldings,
we compute the coordinate of the circumscribed circle’s center of f from that of
f¢ and the angle of the shared edge. Then, we check the overlap between f, and
f using Proposition 2.2 or numerical calculations. Let vy, and vy be the vertices
corresponding to the face fs and f of the dual graph Gp of @, respectively. If f
and f overlap, we output a part of the edge unfolding corresponding to a path from
vy, to vy. Otherwise, we run the procedure recursively. Figure 3.1 illustrates the
rotational unfolding procedure.

15
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3.1. ROTATIONAL UNFOLDING
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Figure 3.1: Ilustration of rotational unfolding.
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Figure 3.2: An example of a symmetric partial edge unfolding with respect to the
z-axis. If (a) is reflected along the z-axis, (b) is obtained.

Although the number of paths is smaller than the number of spanning trees, it
is still large. To reduce the search space, we implement three methods for speeding
up the search. The first method uses the simple distance property. Let D be the
Euclidean distance between the circumscribed circle’s center of f; and that of f, r
and r be the circumscribed circle radii of fs and f, respectively, and W be the sum
of circumscribed circle diameters of the remaining faces in ). For f, and a face in
@ to overlap, the distance between f; and f has to be smaller than W; that is, if
W +rs+r <D, fs does not overlap any other faces in () for any unfolding because
fs is too far from the other faces in Q). Thus, if W 4+ r; +7r < D, we prune the
search.

The second method uses the symmetry of the polyhedron. Figure 3.2 shows
a symmetric edge unfolding. If a polyhedron has such symmetric unfoldings, we
only compute one of them to check if a self-overlapping edge unfolding exists. To
implement this pruning, we maintain the y-coordinate of the circumscribed circle’s
center of the last face before it becomes non-zero. We prune the search if the y-
coordinate becomes negative for the first time. Note that this pruning does not work
for a snub cube, a snub dodecahedron, and Johnson solids because they do not have
mirror symmetry.

In the third method, we run the rotational unfolding by fixing a few steps of the
search. In the rotational unfolding, we first select the start face fs and then roll the
polyhedron () in every possible direction. However, when () has symmetry, it allows
us to fix both the start face f, and the rolling direction. For example, in the case of
a truncated tetrahedron, which consists of regular triangles and regular hexagons,
as shown in Figure 3.3, we only consider three patterns of the start and next face
pairs: (a) a triangle and a hexagon, (b) a hexagon and a triangle, and (c) a hexagon
and a hexagon.

The partial edge unfolding obtained through rotational unfolding has overlapping
faces at both ends, and removing any additional faces would make it disconnected.
Thus, based on the definition in Section 2.3, this partial edge unfolding is a MOPE.
In other words, the rotational unfolding can be seen as an algorithm for enumerating
MOPEs in a polyhedron Q.
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Figure 3.3: Cases of the first two faces in the rotational unfolding. Starting with
face 0, 4, 6, or 7 results in pattern (a). Starting with face 2 and rolling to face 0
results in pattern (b), while rolling to face 1 leads to the pattern (c).
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3.2 Overlapping unfolding for convex regular-faced
polyhedra

We implemented rotational unfolding in C++ and adapted it for convex regular-
faced polyhedra to find their overlapping edge unfoldings!'. In the following sec-
tions, we present results concerning four types of convex regular-faced polyhedra
for which the existence of overlaps remained open. All computational experiments
were conducted on an Intel(R) Xeon(R) CPU E5-2643 v4 at 3.40 GHz with 512 GB
of memory, running CentOS 7.9. The numerical calculations were performed using
WolframScript 1.11.0 with a precision of 100 decimal places.

3.2.1 Archimedean and Johnson solids

We obtained the following theorems for Archimedean solids and Johnson solids:
Theorem 3.2 (Archimedean solids, see Table 3.1).

(a) An icosidodecahedron and a rhombitruncated cuboctahedron have no overlapping
edge unfoldings.

(b) A snub cube has overlapping edge unfoldings.

Theorem 3.3 (Johnson solids, see Table 3.2).
(a) 48 Johnson solids have no overlapping edge unfoldings.

(b) 44 Johnson solids have overlapping edge unfoldings.

TImage files and adjacency list data were sourced from https://mitani.cs.tsukuba.ac.jp/
polyhedron/data/polyhedron.zip.
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Table 3.1: Existence of overlapping edge unfoldings for Archimedean solids. The
timeout was set to 28,800 minutes (20 days).

Is there Number of
Name Number of edge unfoldings [HS13] an overlapping nonisomorphic
edge unfolding? MOPEs
Truncated tetrahedron 6,000 No [Hirl5 -
Cuboctahedron 331,776 No [Hirlb
Truncated hexahedron 32,400,000 No [Hirlb
Truncated octahedron 101,154,816 No [Hirl5
Rhombicuboctahedron 301,056,000,000 No [Hirl5 -
Snub cube 89,904,012,853,248 Yes 3
Icosidodecahedron 208,971,104,256,000 No
Rhombitruncated cuboctahedron 12,418,325,780,889,600 No -
Truncated dodecahedron 4,982,259,375,000,000,000 Yes [HS11 1
Truncated icosahedron 375,291,866,372,898,816,000 Yes [HS11 2
Rhombicosidodecahedron 201,550,864,919,150,779,950,956,544,000 Yes [HS11 Timeout
Snub dodecahedron 438,201,295,386,966,498,858,139,607,040,000,000 Yes [CFGI1] Timeout
Rhombitruncated icosidodecahedron | 21,789,262,703,685,125,511,464,767,107,171,876,864,000 Yes [HS11] Timeout

Figure 3.4: Another type of MOPE we found in a truncated icosahedron. The
right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

Our algorithm enumerates the number of nonisomorphic MOPESs for three types
of Archimedean solids. For the truncated dodecahedron, it was known that a type of
MOPE shown in Figure 1.3 (a) exists, but we found that no other types of MOPEs
exist. For the truncated icosahedron, it was known that a type of MOPE shown in
Figure 1.3 (b) exists, and we found that another type of MOPE, shown in Figure 3.4.
For the snub cube, we found three types of MOPESs, as shown in Figure 3.5. In the
snub cube, all types of MOPEs have two vertices of faces in touch. We compared
the running times of two methods in rotational unfolding to examine the effect of
pruning: one that simply enumerates all paths between two faces and another that
applies pruning methods. The results are shown in Table 3.3.

For the Johnson solids we enumerated the nonisomorphic MOPEs for 29 types
as shown in Appendix A.1. We also found edge unfoldings with two vertices of faces
in touch, two edges of faces in touch, or a vertex of one face and an edge of another
face in touch in Johnson solids. For example, in J66 (Figure A.27), (5), (8), and (12)
have two vertices of faces in touch, (10) has two edges of faces in touch, and (2) and
(3) have a vertex of one face and an edge of another face in touch. For an analytical
verification of cases with exactly two vertices of faces in touch and other types
of boundary-boundary in touch, refer to Appendix B. Furthermore, for Johnson
solids J68 to J82, MOPESs confirm that these Johnson solids have overlapping edge
unfoldings, as illustrated in Figure A.30 and Figure A.31 in Appendix A.1.
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Table 3.2: Existence of overlapping edge unfoldings for Johnson solids. The timeout
was set to 28,800 minutes (20 days).

Number of

Is there

Number of

Number of

Is there

Number of

N | e wntoldings A1y | Ipng | nonbomorphic | Name edge unfoldings 113 s ovalagping | nonisomorpic
J1 45 No - J47 9,324,488,558,669,593,960 Yes 217
J2 121 No J48 2,670,159,599,304,760,178,000 Yes 715
J3 1,815 No J49 672 No
J4 24,000 No J50 5,544 No
J5 297,025 No - J51 42,336 No
J6 78,250,050 No - J52 16,744 No
J7 361 No - J53 153,816 No
J8 3,509 No - J54 75,973 Yes 1
J9 30,976 No - J55 709,632 Yes 1
J10 27,216 No - J56 707.232 Yes 1
J11 403,202 No J57 6,531,840 Yes 1
J12 75 No J58 92,724,962 Yes 1
J13 1,805 No J59 1,651,482,010 Yes 1
J14 1,728 No - J60 1,641,317,568 Yes 1
J15 31,500 No - J61 28,745,798,400 Yes 1
J16 508,805 No - J62 28,080 No
J17 207,368 No - J63 1,734 No
J18 1,609,152 No - J64 8,450 No
J19 4 No - J65 1,245,456 No
J20 29,821,320,745 Yes 4 J66 54,921,311,280 Yes 13
J21 8,223,103,375,490 Yes 9| J67 90,974,647,120,896 Yes 13
J22 37,158,912 No J68 68,495,843,558,495,480,625,000 Yes Timeout
J23 15,482,880,000 No - J69 936,988,158,859,771,579,003,317,600 Yes Timeout
J24 5,996,600,870,820 Yes 6 J70 930,303,529,996,712,062,599,302,400 Yes Timeout
J25 1,702,422,879,696,000 Yes 24 J71 | 12,479,653,904,364,665,92 7,091,740,032 Yes Timeout
J26 1,176 No - J72 206,686,735,580,507,426,149,463,308,960 Yes Timeout
J27 324,900 No - J73 211,950,222,127,067,401,293,093,928,960 Yes Timeout
J28 29,859,840 No - J74 211,595,653,377,414,999,219,839.524,608 Yes Timeout
J29 30,950,832 No J75 216,255,817,875,464,148,759,178.607,616 Yes Timeout
J30 2,518,646,460 No J76 21,081,520,904,394,872,104,529,280 Yes Timeout
J31 2,652,552,060 No J77 21,635,458,027,234,604,842,992,000 Yes Timeout
J32 699,537,024,120 Yes 2| J78 ,184,348,166,814,636,938,752 Yes Timeout
J33 745,208,449,920 Yes 2 J79 4 297,062,278,807,776 Yes Timeout
J34 193,003,269,869,040 Yes 1 J80 56 9,922,583,040 Yes Timeout
J35 301,896,210 No - J81 ,094,253, ,015,611,392 Yes Timeout
J36 302,400,000 No - J82 ,151,245,812,763,713,106,752 Yes Timeout
J37 301,988,758,680 No - J83 197,148,908,795,401,104 Yes 188
J38 270,745,016,304,350 Yes 4| J84 8,640 No
J39 272,026.496,000,000 Yes 4| J8 1,291,795,320 No
J40 75,378,202,163,880,700 Yes 32| J86 84,480 No
J41 75,804,411,381,317,500 Yes 32 J87 652,846 No
J42 | 20,969,865,292,417,385,400 Yes 74 J88 No
J43 | 21,115,350,368,078,435,000 Yes 70 J89 No
Ja4 5,295,528,588 Yes 4 J90 No
J45 13,769,880,349,680 Yes 6 Jo1 No
J46 32,543,644,773,848,180 Yes 13 J92 235,726,848 No

3.2.2 Archimedean prisms

We obtained the following theorem for Archimedean prisms:

Theorem 3.4 (Archimedean prisms). Let n be a natural number and Pr(n) be an

n-gonal Archimedean prism.

(a) If3 <n <23, Pr(n) has no overlapping edge unfoldings.

(b) For n > 24, there exists an overlapping edge unfolding in Pg(n).

We demonstrate the case of no overlapping edge unfolding of Theorem 3.4 (a)
for every n € {3,...,23} of Pgr(n) using rotational unfolding.
Theorem 3.4 (b) can be proven by constructing an overlapping edge unfolding

for Pr(n).
and f(], ..

Let Fr and Fp be the top and bottom faces of Pg(n), respectively,
., fn_1 be the sides, which are numbered counterclockwise viewing from

the top face Fr. For i € {0,...,n — 1}, let ¢; and b; be vertices on Fr and Fp
such that they share two faces f; and f;11, where f, = fo. For n = 24, Pr(n) has
an overlapping edge unfolding, as shown in Figure 3.6 (right), consisting of faces
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Figure 3.5: Three types of MOPEs in the snub cube. The edge unfolding can be
obtained by cutting each snub cube along the thick line.

Table 3.3: Comparison of the running time for rotational unfolding: simply enumer-
ating all paths between two faces (naive) and applying pruning methods (pruning).
The timeout was set to 3,000 minutes.

‘ Name ‘ Number of edge unfoldings [HS13] ‘ Naive ‘ Pruning ‘
Truncated tetrahedron 6,000 0m0.135s 0mo0.021s
Cuboctahedron 331,776 0m0.225s 0mo0.012s
Truncated hexahedron 32,400,000 0m0.652s 0m0.025s
Truncated octahedron 101,154,816 0m1.765s 0m0.049s
Rhombicuboctahedron 301,056,000,000 1m8.449s 0m1.026s
Snub cube 89,904,012,853,248 | 10m37.172 0m25.016s
Icosidodecahedron 208,971,104,256,000 | 15m56.042s Om5.312s
Rhombitruncated cuboctahedron 12,418,325,780,889,600 | 1103m0.526s 6m8.364s
Truncated dodecahedron 4,982,259,375,000,000,000 | 2805m33.762s 10m47.283s
Truncated icosahedron 375,291,866,372,898,816,000 Timeout 2381m20.515s
Rhombicosidodecahedron 201,550,864,919,150,779,950,956,544,000 Timeout Timeout
Snub dodecahedron 438,201,295,386,966,498,858,139,607,040,000,000 Timeout Timeout
Rhombitruncated icosidodecahedron | 21,789,262,703,685,125,511,464,767,107,171,876,864,000 Timeout Timeout

{F, fo, Frr, f3, f2, f1} obtained by cutting along the thick line of Pg(n), as shown in
Figure 3.6 (left). For 25 < n < 28, Pr(n) has an overlapping edge unfolding similar
to Pr(24), as shown in Figure A.32 of Appendix A.2.

It remains to be shown that an overlapping edge unfolding of Pg(n) exists
for n > 29. To prove this, we focus on the edge unfolding that consists of faces
{Fg, fo, Fr, f2, f1}, which overlaps as shown in Figure 3.7 (right), when cut along
the thick line of Pgr(n) in Figure 3.7 (left). Therefore, we can obtain the following
lemma.

Lemma 3.5. For n > 29, if we cut the edges (to,t1), (to,bo), (bo,b1), and (b1, b)
and do not cut (t,_1,t0), (bn_1,b0), (t1,b1), and (t1,t2) of Pr(n), any edge unfolding
15 overlapping.

Figure 3.8 shows a part of the edge unfolding consisting of {Fs, fo, Frr, f2, f1},
and an enlarged and simplified version shown in Figure A.33 of Appendix A.2.
We define ¢! and P for i € {0,...,n — 1} as vertices on Fr and Fp in the edge
unfolding such that they are ¢; and b; in Pg(n), respectively. Let S be a subset of
faces {fo,..., fu1}. The vertices t; and b; in Pr(n) that are shared by S in the
edge unfolding are denoted as ¢7 and b7, respectively. Here, we set bgl and b{l’f > as
(0,0) and (0,1) in the plane, respectively. We can obtain the following lemma.
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Figure 3.6: An overlapping edge unfolding in the 24-gonal Archimedean prism. The
right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.
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."f"\zfn_l R 2 fs
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Figure 3.7: An overlapping edge unfolding in the 29-gonal Archimedean prism. The
right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

Lemma 3.6.

i) Point b¥ exists in the third quadrant.
0 q
(ii) Point bP exists in the first quadrant.

(iii) Let py be an intersection point of the segment bEbP and the y-axis. The y-
coordinate of py is positive.

The y-coordinate of p; is within (0, —1) to (0,1) because the length of the line
segment bFHP is one if Lemma 3.6 (i) and (ii) are satisfied. And if the y-coordinate of
p1 is positive, the line segment bgl b{l’f ? intersects the line segment bZbP. Therefore,
the faces fi and Fg overlap if Lemma 3.6 are satisfied.

We show that Lemma 3.6 is satisfied. We define the angle § = 27 /n as the
exterior angle of the regular n-sided polygon. The range of 6 is 0 < 6 < 27/29
because n > 29. We make the following claim. See the details of the proofs in
Appendix C.1.

Claim 3.7. The coordinates of b and b¥ are (—1 —sin 6 + cos 20,1 — cos 6 — sin 26)
and (—1 — sin @ + cos 20 4 sin 36, 1 — cos 6 — sin 26 + cos 30), respectively.

From Claim 3.7 and differential analysis, we can show Lemma 3.6 (i) - (iii). See
the details of the proofs in Appendix C.2.

With these established, Lemma 3.6 (i) - (iii) hold; that is, an overlapping edge
unfolding exists for Pgr(n), where n > 29.
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Figure 3.9: An overlapping edge unfolding in the 12-gonal Archimedean antiprism.
The right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

3.2.3 Archimedean antiprisms

We obtained the following theorem for Archimedean antiprisms:

Theorem 3.8 (Archimedean antiprisms). Let n be a natural number and Pa(n) be
an n-gonal Archimedean antiprism.

(a) If3 <n <11, Ps(n) has no overlapping edge unfoldings.
(b) For n > 12, there exists an overlapping edge unfolding in Pa(n).

We demonstrate the no overlapping edge unfolding of Theorem 3.8 (a) for every
n € {3,...,11} of P4(n) using rotational unfolding.

Theorem 3.8 (b) can be proven by constructing an overlapping edge unfolding
for Pa(n). Let Fr and Fp be the top and bottom faces of P4(n), respectively, and
fo, .-+, fan_1 be the sides, which are numbered counterclockwise viewing from the top
face Fr. Fori € {0,...,n—1}, let t; and b; be vertices on Fr and Fg such that they
share three faces fo;, fait1, and foipp and fo;_1, fos, and foi1q, where f_1 = fon 1
and fo, = fo. For n = 12, P4(n) has an overlapping edge unfolding, as shown
in Figure 3.9 (right), consisting of faces {f3, Fi, fs, f1, Frr, fo, 1, f2} obtained by
cutting along the thick line of P4(n), as shown in Figure 3.9 (left). For 13 < n < 16,
P4(n) has an overlapping edge unfolding similar to P4(12), as shown in Figure A.34
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Figure 3.10: An overlapping edge unfolding in the 17-gonal Archimedean antiprism.
The right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

Figure 3.11: An overlapping edge unfolding in the 19-gonal Archimedean antiprism.
The right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

of Appendix A.3. For n € {17,18}, P4(n) has overlapping edge unfoldings consisting
of faces {Fr, fo, f1, FB, f5, f1, [3, fo}, as shown in Figure 3.10 (left), obtained by
cutting along the thick line P4(n), as shown in Figure 3.10 (right).

It remains to be shown that an overlapping edge unfolding of P4(n) exists for
n > 19. To prove this, we focus on the edge unfolding that consists of faces
{Fg, f1, f2, Frr, f1, f3} which overlaps as shown in Figure 3.11 (right), when cut along
the thick line of Ps(n) in Figure 3.11 (left). herefore, we can obtain the following
lemma.

Lemma 3.9. For n > 19, if we cut the edges (t1,b1) and (by,b2) and do not cut
the edges (to,t1), (b, b1), (tor br), (tr,t2), and (t1,bs) of Pa(n), any edge unfolding
18 overlapping.

Figure 3.12 shows a part of edge unfolding consisting of {Fg, f1, fo, Frr, fa, f3},
and an enlarged and simplified version shown in Figure A.35 of Appendix A.3. We
define ¢! and bP for i € {0...n— 1} as vertices on Fr and Fg in the edge unfolding
such that they are t; and b; in Pa(n), respectively. Let S be a subset of faces
{fo,- -, fan—1}. The vertices t; and b; are vertices in P4(n) that are shared by S in
the edge unfolding are denoted as t7 and b7, respectively. Here, we set b{S and 7T

1)

as (0,0) and (—1,0) in the plane, respectively. We can obtain the following lemma.
Lemma 3.10.

(i) Point bP exists in the third quadrant.

ii) The y-coordinate of point b3 is positive.
2
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Figure 3.12: Magnified image of overlapping areas in the edge unfolding of P4(n).

(iii) Let py be an intersection point of the segment bPbY and the xz-axis. The x-
coordinate of point py is greater than —1 and less than 0.

Face f3 is a triangle such that the bottom is (—1,0) to (0,0). From Lemma 3.10
(i) and (ii), there exists an intersection point p; of the segment b2bZ and the z-axis.
Moreover, if p; is within (—1,0) to (0,0), the line segment bPb% intersects f3; that
is, f3 and Fg overlap.

We define the angle § = 27 /n as the exterior angle of the regular n-sided polygon.
The range of 6 is 0 < 6 < 27/19 because n > 19. We obtain the following claim.
See the details of the proofs in Appendix C.3.

Claim 3.11. The coordinates of b? and b¥ are (—1 + cos@, —sinf), (—1+ cosf +
sin (20 — 7/6), —sin 6 + cos (20 — 7/6)), respectively. The x-coordinate of p; is
(cos (m/6 —0)/cos (20 —/6)) — 1.

From Claim 3.11 and differential analysis, we can show Lemma 3.10 (i) - (iii).
See the details of the proofs in Appendix C.4.
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With these established, Lemma 3.10 (i) - (iii) hold; that is, an overlapping edge
unfolding exists for P4(n), where n > 19.

3.3 Overlapping lattice unfolding for cuboid
Here, we present the following theorem for cuboids:
Theorem 3.12.

e Both the (1,1,1)-cuboid and (v/2,v/2,v/2)-cuboid have no overlapping lattice
unfolding.

e The (1,1,2)-cuboid has neither faces-in-touch lattice unfolding nor edges-in-
touch lattice unfolding, but it has a vertices-in-touch lattice unfolding.

e Both the (1,2,2)-cuboid and (2,2,2)-cuboid have no faces-in-touch lattice un-
folding, but they have edges-in-touch lattice unfoldings and vertices-in-touch
lattice unfoldings.

o Any other type of cuboids have faces-in-touch lattice unfoldings, edges-in-touch
lattice unfoldings, and vertices-in-touch lattice unfoldings.

Hereafter, we explain the non-existence side of Theorem 3.12 in Section 3.3.1
and the existence side in Section 3.3.2.

3.3.1 Method to check for the non-existence of overlapping
lattice unfoldings

First, we show a method to check the non-existence of overlapping lattice unfoldings
through a computational experiment using rotational unfolding. However, using
rotational unfolding directly for lattice unfolding is inefficient for the search. In this
section, we present the method of extending rotational unfolding to lattice unfolding
and the results of computational experiments.

In the rotational unfolding for polyhedron @), we use the dual graph Gp. There-
fore, since we are considering the lattice unfolding of a cuboid C', we consider the
dual graph Gp¢e of G, where cuboid C'is viewed as a graph. In rotational unfolding,
we efficiently search for overlaps by enumerating MOPEs in the polyhedron (). Sim-
ilarly, by applying rotational unfolding to cuboids, we can enumerate overlapping
partial lattice unfoldings. However, among these overlapping partial lattice unfold-
ings, there are non-minimal overlapping partial lattice unfoldings (non-MOPLs), as
shown in Figure 3.13. Including partial lattice unfoldings that are non-MOPLs re-
duces the efficiency of checking for the existence of overlapping lattice unfoldings.
To address this, we introduce the following characteristics to provide information
about the “direction of rolling when viewed from one step before”:

R: Roll to the right from one step before.

C: Roll straight from one step before.
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(a) Non-MOPL (b) MOPL

Figure 3.13: Examples of partial lattice unfoldings obtained using rotational unfold-
ing directly. Removing the plaid faces in (a) results in (b)’s MOPL.

Y
Y

A
Y

(a) “CCRCL” (b) “CLRRCRLLC”

Figure 3.14: Examples of strings corresponding to partial lattice unfoldings.

L: Roll to the left from one step before.

Therefore, the partial lattice unfolding obtained directly using the rotational unfold-
ing can be represented as a string (see example in Figure 3.14). In the rotational
unfolding, the first step is to roll straight ahead without loss of generality, so the
string corresponding to the partial lattice unfolding obtained in the first step is “C.”
Here, we can show the following lemma:

Lemma 3.13. When the strings corresponding to the partial lattice unfoldings in-
clude “RR” or “LL”, they are non-MOPLs.

Proof. In the second step of the rotational unfolding, we have three cases: (1)
rolling to the right (“CR”; Figure 3.15 (a)), (2) rolling straight (“CC”; Figure 3.15
(b)), and (3) rolling to the left (“CL”; Figure 3.15 (c)). If we repeat the action of
rolling right, or “RR”, twice after the second step, we get (1) “CRRR” (Figure 3.15
(d)), (2) “CCRR” (Figure 3.15 (e)), and (3) “CLRR” (Figure 3.15 (f)). For case
(1), this situation cannot occur because we have already used the face as part of
the constructed partial edge unfolding. For cases (2) and (3) (Figure 3.15 (e) and
Figure 3.15 (f)), these partial lattice unfoldings are non-MOPLs, and removing
the plaid faces results in MOPLs Figure 3.15 (a) and Figure 3.15 (b). The same
statement applies even if “RR” appears not only in the first four steps but also at
any point during the rolling process. Similarly, the same can be said for “LL.” [

Therefore, if “RR” or “LL” appears during rolling, it is a non-MOPL; there is
no need to continue rolling, thereby pruning the search.



28 3.3. OVERLAPPING LATTICE UNFOLDING FOR CUBOID
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(d) “CRRR” (e) “CCRR” (f) “CLRR”

Figure 3.15: Examples of partial lattice unfoldings obtained through two rotations
and a double right rotation. (a)-(c): Lattice unfoldings from two rotations. (d)-(f):
Lattice unfoldings with an additional double right roll after two rotations.

When a cuboid has an overlapping lattice unfolding, we can determine how they
overlap using the following claim:

Claim 3.14. In rotational unfolding, compute the center coordinates of the face at
one endpoint, assuming its center coordinates are (0,0) (see Figure 3.16 (a)). Then,
while rolling the cuboid sequentially, compute the center coordinates of the face at
the other endpoint in the partial lattice unfolding. We can determine the type of
unfolding based on the coordinates of the center of the face at the other endpoint:

e [f the coordinates are (0,0), it is a faces-in-touch unfolding (a plaid face in

Figure 3.16 (b)).

e [f the coordinates are (0,1), (—=1,0), or (0,—1), it is an edges-in-touching
unfolding (polka dot faces in Figure 3.16 (b)).

e [f the coordinates are (1,1), (1,—1), (—=1,—=1), or (=1,1), it is a vertices-in-
touch unfolding (striped faces in Figure 3.16 (b)).

We implemented the method of extending rotational unfolding to lattice unfold-
ing and obtained the non-existence results shown in Theorem 3.12. Table 3.4 to
3.6 show the running times of computational experiments for each type of lattice
cuboid.  These experiment results include verifying the previous results [Heal§]
and [Sugl§].

3.3.2 Proving the existence of overlapping lattice unfoldings

Hereafter, we prove the existence side of the statements of Theorem 3.12 by showing
specific overlapping unfoldings.
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(a) The coordinates of the (b) The coordinates of the center of
center of each face the face at the other endpoint

Figure 3.16: A method for checking overlap in rotational unfoldings and identifying
their types.

Table 3.4: The running time to check the non-existence of faces-in-touch unfoldings.

| Lattice cuboid [ [F[|[E] | [V]] Time |
(1,1, 1)-cuboid 6| 12 8 || 0m0.056s
(1,1, 2)-cuboid 10 20| 12 Omo0.106s
(1,2, 2)-cuboid 16 | 32| 18] Oml.187s
(2,2,2)-cuboid 24 [ 48] 26 | 0m50.757s
(vV2,v/2,V/2)-cuboid | 12| 24| 14 | 0m1.009s

Table 3.5: The running time to check the non-existence of edges-in-touch unfoldings.

| Lattice cuboid [ [F[ | [E] | V][ Time |
(1,1, 1)-cuboid 6| 12| 8| 0m0.051s
(1,1, 2)-cuboid 10| 20 | 12 || Om0.132s
(v2,v/2,V2)-cuboid | 12| 24 | 14 | Om1.021s

Table 3.6: The running time to check the non-existence of vertices-in-touch unfold-
ings.

| Lattice cuboid || [F[ | [E] | [V][ Time
(1,1, 1)-cuboid 6 12] 8] 0m0.053s
(v2,v/2,V2)-cuboid | 12| 24 | 14 | Om1.098s
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Figure 3.17: Overlapping partial lattice unfoldings for L = 1 and v/2. Cut along
the red lines on the left cuboid to obtain the right unfoldings.

Caseof L =1

From Theorems 1.3 and 1.4, faces-in-touch, edges-in-touch, and vertices-in-touch
unfoldings exist for the (x,y, z)-cuboid, where z > 3. For the remaining cases for
the case of L = 1, we provide specific examples of unfoldings as follows:

Lemma 3.15.
o The (1,1,2)-cuboid has a vertices-in-touch unfolding (Figure 3.17 (a)).

e The (1,2,2)-cuboid has both an edges-in-touch unfolding (Figure 3.17 (b)) and
a vertices-in-touch unfolding (Figure 3.17 (c)).

e The (2,2,2)-cuboid has both an edges-in-touch unfolding (Figure 3.17 (d)) and
a vertices-in-touch unfolding (Figure 3.17 (e)).

Case of L = /2, L =+/5, and L = /10
From the inclusion relationship between the edges-in-touch and vertices-in-touch
unfolding, we have only to show the existence of the faces-in-touch unfolding.



CHAPTER 3. OVERLAPPING UNFOLDING FOR CONVEX POLYHEDRA 31
ot w
v

Figure 3.18: Overlapping partial lattice unfolding Q).
Y

Figure 3.19: Embedding of (), in the three front-facing faces of the (\/5, \/5, 2\/5)—
cuboid.

A faces-in-touch unfolding exist for the (v/2,v/2,2v/2)-cuboid (Figure 3.17 (f)).
From now on, we call this partial lattice unfolding as @ (Figure 3.18). Moreover,
the (\/§ , V2 , Qﬁ)—cuboid can be unfolded to include the partial lattice unfolding @)y,
because (), can be embedded in the three faces in front of the (\/5, V2, 2\/5)—cuboid
(see Figure 3.19). Note that we have to fold the three triangular faces: a plaid face
in the positive y-axis direction, a polka dot face in the positive direction of the -
axis direction, and a striped face in the positive direction of the z-axis direction.
This embedding method can also be applied to the (:L‘\/i, V2, zﬁ)—cuboid, where
x,y,z > 2, as shown in Figure 3.20.

The same embedding can be performed for cases where L = v/5 and L = /10
(see Figure 3.21 (a) and (b)).

Case of L > /13
The partial lattice unfolding @ can be embedded in the (v/13,v/13,/13)-

Figure 3.20: Embedding of Q;, in the (2v/2, yv/2, 2v/2)-cuboid, with z > 2.
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cuboid, as shown in Figure 3.21 (c). Here, we present the following lemma:

Lemma 3.16. The partial lattice unfolding Qp can be embedded in the (L, L, L)-
cuboid, where L > V13.

Proof. Consider the three unit squares with vertex v in common (Figure 3.21 (d)).
The three-unit squares enclosed in blue in Figure 3.18 can be embedded in this
point. Let S be the side face of a cone with the length of axis V13 and a central
angle of 270° (Figure 3.22). Hereafter, S is called the cone. Since the central angle
of the cone S is 270°, the three unit squares enclosed in blue in Figure 3.18 can
be embedded with vertex v coinciding. Additionally, due to the Euclidean distance
between the point v and the furthest point w in Figure 3.18 being /22 + 32 = /13,
the remaining faces, except for the three faces enclosed in blue, can be embedded as
shown in Figure 3.22 (right). The cone S can be embedded in the three front faces
of a (L, L, L)-cuboid where L > /13, as shown in Figure 3.23. From the fact that
the cone S can be embedded in a (L, L, L)-cuboid and that @); can be embedded
on top of the cone S, we can concluded that ()7, can be embedded in the three front
faces of a (L, L, L)-cuboid. O

From this lemma, a faces-in-touch unfolding exists for the (zL,yL, zL)-cuboid
in any of the x,y, z, where L > +/13. The same can be said for edges-in-touch and
vertices-in-touch unfolding due to the inclusion relationship.

3.4 Summary and discussion on overlapping un-
foldings

In this chapter, we showed results on the existence of overlapping unfoldings in
edge unfoldings of convex regular-faced polyhedra, as well as in lattice unfoldings of
cuboids.

First, we proposed a rotational unfolding algorithm to determine whether a given
polyhedron has overlapping edge unfoldings. The key idea of this algorithm is to
focus on paths instead of spanning trees of edge unfoldings. Additionally, by using
pruning methods according to the symmetry and distances, the search becomes more
efficient. Applying this algorithm allowed us to confirm the existence of overlapping
edge unfoldings for all Archimedean solids and Johnson solids. In addition, by com-
bining this algorithm with analytical techniques, we clarified the conditions under
which Archimedean prisms and antiprisms admit overlapping edge unfoldings.

Next, we applied a similar idea to the lattice unfoldings of cuboids. By extending
the rotational unfolding, we confirmed that certain cuboids of specific sizes do not
have particular types of overlapping lattice unfoldings. Furthermore, by using an em-
bedding technique for specific lattice unfoldings, we showed that cuboids exceeding
certain sizes have faces-in-touch, edges-in-touch, and vertices-in-touch unfoldings.

On the other hand, this study only considered polyhedra where all edges have
the same length. As a future direction, it would be interesting to explore cases where
some edges have different lengths.
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(c) The (v/13,/13,+/13)-cuboid (d) The (L, L, L)-cuboid (L > /13)
Figure 3.21: Embedding of ), in each cuboid.

V3
)

Figure 3.22: The side face of a cone with an axis length of v/13 and a central angle
of 270°. Rounding the left fan shape yields the solid on the right, where ), can be
embedded.
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Figure 3.23: Embedding of the cone S in the three front-facing faces of the (L, L, L)-
cuboid, where L > v/13.
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(a) Lattice (b) Lattice (c) Lattice
tehrahedron octahedron icosahedron

Figure 3.24: Examples of Platonic solids formed from a triangular lattice.

For example, as shown in Figure 1.2, if the height of a regular n-gonal prism
is increased or decreased from one, overlapping unfoldings may exist even when
n < 24. From this observation, the following open problem can be considered:

Open problem 3.17. Consider a regular n-gonal prism with height h, where the
top and bottom faces are reqular n-gons. Determine the values of n and h for which
the prism has an overlapping edge unfolding.

Similarly, the following open problem can be posed for antiprisms:

Open problem 3.18. Consider a regular m-gonal antiprism with height h, where
the top and bottom faces are reqular m-gons. Determine the values of m and h for
which the antiprism has an overlapping edge unfolding.

In this study, we focused on cutting cuboids along a square lattice. However, as
shown in Figure 3.24, we can also consider unfoldings of lattice tetrahedra, lattice
octahedra, and lattice icosahedra along a triangular lattice. According to [KSU24],
a tetrahedron never has a faces-in-touch unfolding, regardless of how it is unfolded.
Thus, the contrast between unfoldings of tetrahedra on a triangular lattice and
cuboids on a square lattice is interesting.



Chapter 4

The number of non-overlapping
unfoldings in convex polyhedra

4.1 Counting algorithm for the number of non-
overlapping unfoldings

In this section, we describe an algorithm for counting the number of non-overlapping
unfoldings of a given polyhedron. From Lemmas 2.1 and 2.3, the number of unfold-
ings can be obtained by counting the number of cutting lines. The number of cutting
trees can be counted by constructing a ZDD Z+ [KIIM17]|. However, for polyhedra
where unfolding along specific cutting lines results in overlapping unfoldings, Zs
includes these overlapping unfoldings. To efficiently remove the overlapping unfold-
ings, we use the subsetting method, an operation over ZDDs [IM13]. The subsetting
method constructs a new ZDD Z,, by extracting the family of sets that satisfy the
constraint C from ZDD Z.

We now present a method for removing overlapping unfoldings using the subset-
ting method. Hereafter, we call both MOPEs and MOPLs collectively as minimal
overlapping partial unfoldings (MOPUs). As described in Section 3.1, MOPUs can
be enumerated using rotational unfolding. For a (partial) unfolding U, let NC[U]
be the set of edges that are not cut when unfolding the polyhedron. The following
lemma holds for any MOPU M; (0 <i < k), where k is the number of MOPUs.

Lemma 4.1. If an unfolding U satisfies NC[M;] C NC|U], then U is an overlapping
unfolding.

Proof. Let the sequence of faces in MOPU M; be fi, fo,..., fo, and let e; be the
edge shared between each pair of adjacent faces f; and f;11 (where the faces f; and fy
overlap). Since NC[M;] represents the set of uncut edges in the partial unfolding M;,
we can write NC[M;] = {e1,ea,...,€,-1}. On the other hand, from the condition
NC[M;] € NC[U], it follows that the set ey, es,...,e,—; must be included in the
unfolding U. Therefore, the sequence of faces f1, fo, ..., fo appears in U, indicating
that U has overlaps. Il

From Lemma 4.1, removing the family of sets U; (which represents unfoldings
containing the MOPU M;) from the ZDD Zr yields a ZDD that represents only
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non-overlapping unfoldings that do not include the structure of M;. On the other
hand, to construct the family of sets U; representing unfoldings that include MOPU
M;, we need a ZDD representing the family of spanning trees that contain NC[M;].
However, by applying the following lemma, we can create a simpler ZDD.

Lemma 4.2. Given the family of sets Z1 representing all unfoldings, the following
conditions are equivalent:

(1) The family of sets obtained by removing the unfoldings that include MOPU M,
from Z.

(2) The family of sets obtained by removing the family F; = NC[M;)U E" | E' C E\ NC[M,],
which contains all subsets that include NC[M;], from Zr.

Proof. From the condition, we know that U; C F;. Now, if we define N; = F; \ U,
then N contains no sets that represent unfoldings, meaning N; € Z7. Therefore,
we have the following equivalence:

Zr\Fi=Zr\ WiUly) = Z7\ U,
which completes the proof. O]

Therefore, we can construct a ZDD that represents non-overlapping unfoldings
by following these steps:

Step 1. Construct the ZDD Z+ that represents all possible unfoldings.

Step 2. For each i (0 < ¢ < k), construct a ZDD F; representing the family of all
sets containing every element of NC[M;].

Step 3. Apply the subsetting method on Z7 using the constraints from each F;, to
construct a ZDD Zj, that excludes MOPUs M; through M,.

4.2 Computational experiments on counting nonover-
lapping unfoldings

Here, we present the results of applying the algorithm for counting non-overlapping
unfoldings to the edge unfoldings of convex regular-faced polyhedra and the lattice
unfoldings of cuboids. We used the TdZdd library! to construct the ZDD Z+, which
represents all unfoldings, the ZDD F;, which represents the family of sets contain-
ing all elements of NC[M;], and applied the subsetting method. The experiments
were conducted under the same conditions as described in Section 3.2. The rota-
tional unfolding method was used to enumerate MOPUs for the convex regular-faced
polyhedra, Johnson solids, Archimedean (anti)prisms, and lattice cuboids.

https://github.com/kunisura/TdZdd



CHAPTER 4. THE NUMBER OF NON-OVERLAPPING UNFOLDINGS IN

CONVEX POLYHEDRA 37
100
<%0}
g
&
g 80
R
=
IS 60
o 0o
=l
w B
;Dg)o 40
28
o
()
= 20
ol
0

0 10 20 30 40 50 60 70 80 90 100
n-gonal Archimedean prisms

Figure 4.1: The percentage of non-overlapping edge unfoldings in Archimedean
prisms.

4.2.1 The number of non-overlapping edge unfoldings for
convex regular-faced polyhedra

Tables 4.1 to 4.4 show the results of counting the number of non-overlapping edge
unfoldings and the percentage of non-overlapping unfoldings among all edge unfold-
ings, for Archimedean solids, Johnson solids, Archimedean prisms, and Archimedean
antiprisms, respectively. Figures 4.1 and 4.2 show line graphs with the values
of n for Archimedean n-gonal prisms and the values of m for Archimedean m-gonal
antiprisms on the horizontal axis, and the percentage of non-overlapping edge un-
foldings on the vertical axis.

From the results of these experiments, we can find the following. First, let’s com-
pare the truncated icosahedron and the truncated dodecahedron in Archimedean
solids (Table 4.1). Both polyhedra have the same number of vertices, edges, and
faces, the truncated icosahedron has more MOPUs. However, the truncated dodec-
ahedron has a lower percentage of non-overlapping edge unfoldings. The MOPUs
in the truncated icosahedron consist of eight or nine faces (Figure 1.3 (b) and Fig-
ure 3.4). On the other hand, the MOPU in the truncated dodecahedron includes
only 4 faces (Figure 1.3 (a)).

Next, for Archimedean n-gonal prisms, there is an approximate 26% decrease in
the percentage of non-overlapping edge unfoldings when n increases from 28 to 29.
For n = 28, there are three types of MOPUs, consisting of six, seven, or eight faces
(Figure 4.3). For n = 29, there are five types of MOPUs, three of which are the
same as for n = 28, and the other two consist of four faces (Figure 4.4).

Similarly, for Archimedean m-gonal antiprisms, there is an approximate 70%
decrease in the percentage of non-overlapping edge unfoldings when m increases
from 17 to 18. For m = 17, there are two types of MOPUs, both consisting of eight
faces (Figure 4.5). For m = 18, there are five types of MOPUs, two of which are
the same as for m = 17, and the other three consist of six faces (Figure 4.6).
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Table 4.1: The number and percentage of non-overlapping edge unfoldings for
Archimedean solids.
IR, . . - Non-overlapping 0
Archimedean solids VI |E| | |F| | #(MOPU) #(Edge unfolding) # ( edge unfolding ) Pet.(%)
Snub cube 24| 60| 38 72 89,904,012,853,248 85,967,688,920,076 95.62
Truncated dodecahedron 60| 90| 32 120 4,982,259,375,000,000,000 1,173,681,002,295,455,040 23.56
Truncated icosahedron 60 | 90| 32 240 375,291,866,372,898,816,000 | 371,723,160,733,469,233,260 99.05
Rhombicosidodecahedron 60 | 120 | 62 - 201,550,864,919,150,779,950,956,544,000 - -
Snub dodecahedron 60 | 150 | 92 - 438,201,295,386,966,498,858,139,607,040,000,000 -
Rhombitruncated icosidodecahedron | 120 | 180 | 62 - 21,789,262,703,685,125,511,464,767,107,171,876,864,000 -

Table 4.2: The number and percentage of non-overlapping edge unfoldings for John-
son solids. The timeout was set to 28,800 minutes (20 days).

Johnson solids || [V| | |E| | |F| | #(MOPU) #(Edge unfolding) # <1\i‘:;;::1‘2f1:f;111’§;3> Pet.(%)
J20 2| 45| 22 40 29,821,320,745 27,158,087,415 || 91.07
21 30| 55| 27 90 8,223,108,375,490 6,207,186,667,720 | 76.58
124 %] 55| 6 60 5,996,600,870,820 5,492,624,228 190 || 91.60
125 30| 65| 24 240 1,702,422,879,606,000 947,565,833,513,130 | 55.66
132 % | 50| 27 20 699,537,024,120 699,433,603,320 || 99.99
733 % | 50| 27 20 745,208,449,920 745,105,029,120 | 99.99
T34 30| 60| 32 20 193,003,269,869,040 100,653,702,525,040 || 98.78
38 30| 60| 32 80 270,745,016,304,350 214,085,775,357,270 | 79.07
J39 30| 60| 32 80 272,026,496,000,000 215,087,798,524,180 | 79.07
40 35| 70| 37 320 75,378,202,163,830,700 | 45,541,858,035,543,600 || 60.42
JaT 35| 70| 37 320 75,804,411,381,317,500 | 45,774,068,067,924,850 || 60.30
J12 10| 80| 42 1,480 20,069,865,202,417,385,400 | 8,873,053,322,249,583,330 || 42.32
43 0] 80| 42 1,400 21,115,350,368,078,435,000 | 8,884,490, 741,507,534,860 || 42.08
Ja4 18] 42| 26 24 5,295,528 588 5,231,781,054 | 98.80
J45 24| 56| 34 43 13,769,880,349,680 13,386,219,088,644 | 97.21
J46 30| 70| 42 170 32,543,644,773,818,180 | 25,553,553,814,333,235 | 78.52
J47 35| 80| 47 1,175 9,324,488 558 669,593,960 | 4,135,578,144,180,583,965 | 44.35
J48 0] 90| 52 7,290 2,670,159,599,304,760,178,000 N -
54 3] 22| 11 1 75,073 75,749 | 99.71
J55 4] 26| 14 8 70,632 705,144 || 99.37
J56 14| 26| 14 8 707,232 702520 || 99.33
J57 15| 30| 17 12 6,531,840 6,457,860 | 9887
J58 21| 35| 16 10 92,724,962 92,219,782 | 99.46
759 22| 40| 20 20 1,651,482,010 1632,041,030 | 98.88
J60 22| 40| 20 20 1,641,317,568 1621,738,522 | 98.81
61 23] 45| 2 30 28,745,798 400 28,183,512,978 || 98.04
J66 28| 48] 22 104 54,921,311,280 39,055,563,000 | 7111
J67 32| 60 30 208 90,974,647,120,896 43,437,626,181,464 | 47.75
J68 65 | 105 | 42 - 68,495,843 558,495,480,625,000 - -
J69 70 | 120 | 52 - 936,988, 158,859,771,579,003,317,600 - -
J70 70 | 120 | 52 - 930,303,529,996,712,062,599,302,400 - -
J71 75 | 135 | 62 - 12,479,653,904,364,665,921,377,001,740,032 - -
72 60 | 120 | 62 - 206,686,735,580,507,426,149,463,308,960 - -
73 60 | 120 | 62 - 211,950,222,127,067,401,293,003,928,060 - -
J74 60 | 120 | 62 - 211,595,653,377,414,999,219,839 524,608 - -
175 60 | 120 | 62 - 216,255,817,875,464, 148,759, 178,607,616 - -
176 55 | 105 | 52 - 21,081,520,904,394,872,104,529,280 - -
T77 55 | 105 | 52 - 21,635,458,027,234,604,842,992,000 - -
778 55 | 105 | 52 - 21,638,184,348,166,814,636,938,752 - -
779 55 | 105 | 52 - 22,171,247,351,297,062,278 807,776 - -
780 50 | 90| 42 - 2,163,645,669,729,922 533,040 - -
T81 50 | 90| 42 - 2,004,253,294,125,015,611,302 - -
782 50 | 90| 42 - 2,151,245 312,763,713,106,752 - -
783 5| 75| 32 1,260 197,148,008,795,401,104 | 143,844,293,105,306,508 || 72,96
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Table 4.3: The number and percentage of non-overlapping edge unfoldings for

Archimedean prisms.

n-prisws [ [V] | |E] | [F] | #(MOPU) F(Nou-overlapping edge unfolding) Det.(%)
2d-prism | 48 | 72| 26 96 95.64
25-prism | 50| 75| 27 00
26-prism | 52| 78] 28 208
27-prism 54| 81 29 216
56| 84| 30 336
20-prism | 58 | 87| 31 580
30-prism || 60 | 00| 32 720
3lprism | 62| 93] 33 TH 5,610,734,416,791,278,823
G| 96| 34 768 21,619,687,090,073, 296,351
33-prism | 66 99| 35 792 :
34-prism 68102 | 36 952 32( Ela 730, ‘171 505. )14.”4[)
70105 | 37 1,120 1,224,788 877,353, 311,603,655
72108 | 38 1,410
74| 111 39 1,776
76 [ 114 | 40 2,128 64,245,506,338,412,691,619,868
s T 107 | 41 2,496
40-prism 80 | 120 42 2,880
Tlprism | 82| 123 | 43 3.116
i RI[ 126 M 360
Bprism | 86| 120 15 3781
Jd-prism || 88 | 132 46 3372
T5-prism | 90| 135 | 47 3,960
T6-prism | 92 | 133 | 48 1,600 2,731,190,668,052,148,041,164,200,772
47-prism 94 | 141 49 5,076
I8-prism | 96| 144 ] 50 5,760 5,734,533,013,527,410, 214,707,200 33,248,653,378,322,746,431,035,217, 1
T0-prism | 98 | 147 | 51 6,664 Xi 632,
50-prism || 100 | 150 | 52 7,400 989,275,799,980,653, 159.079.00& 381,
51-prism | 102 | 153 53 7,752 2,068,859,848,320,328,618,349,489,286.,879
52-prism | 104 | 156 | 54 8,320 14,329,957 765 610553, 170 m( 7,785,152.064,553,875,176, 792, 718,269, 15:
53-prism | 106 | 159 | 55 001 ; : 613,250,778, 119,135,586,120,657
5d-prism || 108 | 162 | 56 9504 7 050,601 743 390,920 01,900
55-prism | 110 | 165 | 57 10,120 7 857.74-1.052(.382.47».»()? 156,510 956 855
56-prism | 112 | 163 | 58 10,528 2,003,785,586,570,858,884,013, 1.618.101.034.002.851.78u.742.8()7.
57-prism || 114 | 171 | 59 10,04 : 857591072637, 105 7161425 6,144,514,101,474,823,054,
58-prism | 116 | 174 | 60 11,332 : 6
[ T8 [ 177 ] 61 12,744
60-prism | 120 | 180 | 62 13,200
61-prism,
62-prism
fsm 16, m 862, 490 sc 318 cm m
G-prism :
65-prism 0L103. 179.720; qw <>% m
66-prism
67-prism 1 I sm.ssu.sm.uos.aos 713

6S-prism

5.090,282,288,662,448 445,864

60-prism

T0-prism
Tl-prism 1.440,470,033.3

T2-prism 5.051,621.356.256 25 10118

T3-prism 20,628,318, 790,005,383,502,284,2 0.

Td-prism 5,010,535,35,296,089, 850,020, .25 299.066 575 L1 T2.166.052

75 prisut

71,817,128,867,759,297,593,082,123

T6-prism

TT-prisim

1.221 .li()&.JSJ.()"&.JIJ.142.987.%(:.7 l’?. l) 5,5 1,732,009,405,771,917,690,525,

78-prisu

15.957,810,909,148.397,191

T0-prism

81 38,236 60,318,891,360,909.,98' 23,966,231,512,837,756,482,429,326,605,666

R0-prism

287,537,928,032,449,270,480,051,118,959

82 39,680 227,962,700,977,360,47°

S1-prism

83 10,500 861,402,987,056,617,421

R2-prism

,341,132,294,891,175,058,139,558,428, 5 12,441, N)l 210,039
3 4

98,838,582,230,210,121,899,601,749,106,7

84 43,296 3,254,488.5!

0,147,518,091,413,729,519,608,692,068,340,007,484,603

8,500,630,193,132,229,526,400

962,060,133,459,799,581,503,709,666,685 705,283,282,291,593,247 449,255

85 45,152 12,294,037,7:

86, 16,368 16,434, 7

87 48,620 175,359,973,181,486,662,638
88 50,912

257,261,176,564,360,166,567,970,609,

890,564,328,098,014,416,825,940,79:

3 361,807,045,468,520,205,7¢

7 lﬂ\ 009,277,266,446, 1\')4 341 "2‘] 697, ‘)4(] 171,

08,684,200,497,934,083,305,406,003,263,080

172 961 003.281.071.3\8 802,898,801,630,921,272,80¢

594,011,003,719,084,348,517,902,267,230,291,120, 1,842,484,668,472,842,688,235,271,932,8

s 59 53,010 612,
88-prism 90 55.264 63.110,777,086, 198,028 34
80-prism 91 58384 619,821,719,604,700,475,856,060 4
90-prism 92 61,200 T34, 128,635,924,38T.058, 58,1237
91-prism 93 62,630 507,268 882,587, 101,90
92-prism 04 64,400 ,957.124,704,016.
93-prism 9 66,588
9d-prism 9 59,936
05-prism o7
96-prism 98
97-prism 99 1,461,012,223,100,730,076,656,
08-prism 100 70.968 || _5,508,783,927,988,926
99-prism 101 83,556 || 20,768 847,849,083,459,407,230, 734,273,699,
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Table 4.4: The number and percentage of non-overlapping edge unfoldings for
Archimedean antiprisms.

n-antiprisws [ V] [ [E] [ [F] | Z(MOPU) #(Edge unfolding) F(Nou-overlapping edge unfolding)
T-antiprism | 24 | 48] 26 51,599.794,176 40.7435
T3-antiprism | 26 | 52| 28 383,142,771,674 369,350,

14-antiprism || 28 | 56 | 30 2,828,107,288,188 2,726,368,2

20,768,716,818,000 30,021,578, 135,350

T5-antiprism || 30 | 60 | 52

T6-antiprism || 32 | 64| 34 151,840,963,183 392 146,378,600,602,880

1,105,779,284,582,116 989,008,190,008,180

T7-antiprism || 31| 68 | 36

B-antiprism || 36 | 72| 38

8,024,954,790,380,544 1,517,682,139,108,200
58,059,628,319,357,318 10,550,126,657,845,736

19-antiprism || 38 | 76 | 40

antiprism || 40 | 80| 42 418,891,171,182,561,000 72,542,787,706,816,320

antiprism 42| 84| 44 500,034,989,831,068,818

22-antiprism || 44 | 88| 46 3,449,844,625,120,946,448

23-antiprism || 46 | 92| 48

41,846,136,285,049,392

20-antiprism | 48 | 96| 50

antiprism || 50 | 100 0,708,398, 183,722, 1,117,782, 108,867,130,830,950

26-antiprism_ || 52 | 104 56,460,916,728,463,179,389,652 7.655,723,643,312 875,568,936
antiprism_ || 54 | 108 101,873,068,071, 1 10,561,001,359,603,932,081,708
antiprism 56 | 112 2,856,496,726,2 264,478,642,931,290,919,674,648
antiprism 58 | 116 20,277,959,821,998,087,658,569,178 1,739,241,5 3 9,470

30-antiprism | 60 | 120 84,000

143,779,866,504,299,168, 102 71, 103,001, 150,010,992, 135,160
3 g

261,238,041,888,906, 1 227, 60,049,681,648,022

STantiprism || 62 | 124
32-antiprism || 64 | 128

3.165,252,109,504

5,066,361,310,190

antiprism || 66 | 132

5,731,990,378 832

3dantiprism | 68 | 136
35-antiprism || 70 | 140

155,062,662,310,102,785,066.,461,104,560
125,832

8,860,941,014,408,801 (ml 749,082,112

S6-antiprism || 72 | 144
3

antiprism 74| 148 126,017,967,976,156,654,397,534,266,950,026 6,992,936,456,851,489,392,078,163,320,97;

887,084,326,168,926,324,030,843,544,372,524 44,438,923,33 3,356,651,187,920,012

3S-antiprism | 76 | 152

6,240,170,805,918,890,922,630 444,122,537 088 297 478,382,005,821,691,364,579,412,449,706

0-antiprism || 78

8.586,205,2: 311,520

F0-antiprism_ |80

199,501,916,122,251,960,215,169,912

T-antiprism || 82

83,07,101,224,353,764,482,646,914,913,598 6

Z-antiprism || 84

A3-antiprism | 86 557 611,275,066,805,327,007,702.044,873,987,094

9. 546,799,

Ad-antiprism || 88

45-antiprism || 90 24,431,729,185,67:

d6-antiprism | 92 158,880,05:

1,060,539,783,181,405

Tr-antiprism || 04

7,070,805, 121,439,

I8-antiprism |96

19-antiprism || 98 T

50-antiprism || 100 12,547,524,306, T 562,500

5l-antiprism || 102 87,722,051,242,994,803,143,643,140,957,694,192 485,255,552

antiprism || 104

“antiprism | 106 2
S5d-antiprism [| 108 29,90° ,896,- 25‘ 612, u()l 14 448 rl&.uu lll.J4b,bUi.‘Ju&1.’l 0)1.01081
55-antiprism || 110 18,480 208,787,039,294,802,995,558,997,194,768,329,038,664, 289 (112 7':[\ 4 066,189,399,259,848,921,000,213,749,369,244,891,377, 7[)25 200

20,160 1,157,061 560,531,639,929,002,113,295,131,420,66;

SG-antiprism || 112

Cantiprism || 114

20,718 T0.165.220.076.,551,300.350,958.036.555.065. 197 670,565, rm'> 'uz 5 177, fv% 738,793,781,313,663,675,391,718,811,916,567,960. mv
2 70,895,802,507,339,433,606,655,281,989,227,262, 198,207, 167, 104 un 1,180,051,219 817,443 505,617,832,000,129,322,320,242,838,96 1,804

57
S&-antiprism || 116
5

O-antiprism || 118
G

991,305,112, 112,006,674,502, 236,216,299 036,533,680, 1215 7.834,251,661,500,050,866,352.827. 703,061,557 .850,624,078,276,051
antiprism_|| 120 =

3,445,441,668,665,681,646,9 2,224,080,264, 50,403,377,478,963,170,902,

R 3
24,008,998,657,730,043,418,999,210,016,836,054,318 873, 326,358,125,570,791,131,913,614,291,766,990,868, 13‘! 803,779,993,658

Glantiprism_| 122

G2-antiprism || 124 167,257,831,873,332,437,880,307,618 553,808 550,206, 1,854,939,808,105,063,172,332,156,437,560,469,843 454,970,270,135 872
j3-antiprism_|| 120 29,232 1,164,892,592,931,629,392,338 324,783 815,505,600,459,556,438 051,914,621 568,932,644,431,739,514,519,035,956,010

antiprism || 128 30,720 §.111,027,415,042,412,087,059,884,505, 181,466,811, 70,01 3,188 T11,622,221,64 850.868,389,602,010,305,115 2
G5-antiprism_|| 130 31,720 56,162,162,218,619,591,296,189,126,517,728,233,800,837,328,122,164,209,250 512,324,566,561,175,718,389,472,139,379,279,869,381,105,000,020,827,940

1,762 24,582,243,007,524,492,920,016,364

392,953,311,363,100,782,765,619,901 258 6 1,263,966,574,522,587,

84,102 3.596,222,163,944,667.

Go-antiprism_|| 132

2,734,150,277,149,943,789,424,653,221,975,737,385,578,070,013,528,736,239,846 23,8438

9,380,617,148,795,466,186,545,241,390,034,312,194,471,190,721,410

GT-antiprism || 134
GS-antiprism | 136

19,019,848,444, ,960,788,030,632,146,757,126,643,109, 790, 588,744 158,04

,032,158, 741,664,00 923,236,605,161,466,417,144

132,281,097,98° ,216,327, ”.)9.101].829.981 177,127,561,996,392, 778,368 1,047,172,473,392,558,836,251,756,065,865,616,682,360,236,358,525,772,236,994

antiprism || 138

10 IHU 019,808,251,652,7 07,892,032,413,807,786,850,000,883,510,526,443,500 6,,940,458,038, 739,497 932,415,601,709,547,911,589 835,564,772, 106,776,166,220

antiprism || 140

7
TLantiprism || 12

12,600 6,391,523,254,028,788,004,842,904,160, 103,165,297, 190,061,440,230,870,478 513,422 15,780,684,032,708,802,155,441,190,837,474,021,683,024,652,580,684,818 605,681
15,501 11,116,020,215,100,850,388 9 3,516,153,029,136,510,863,260,931,308, 786,876,116 E 3.167,415.275,991,180,997,730,729,891,005,322,066,504,918 858,137,619,

E 3,131 2
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Figure 4.2: The percentage of non-overlapping edge unfoldings in Archimedean an-
tiprisms.

Figure 4.3: MOPUs in Archimedean 28-gonal prisms (excluding those with rota-
tional and mirror symmetry).

From these results, we can conclude that the percentage of non-overlapping edge
unfoldings depends not on the number of MOPUs in each polyhedron, but rather
on the number of faces in each MOPU.

4.2.2 The number of non-overlapping lattice unfoldings for
cuboids

Table 4.5 shows the results of counting the number of lattice unfoldings in (xL, yL, zL)-
cuboids that do not have face contact, edge contact, or vertex contact, respectively.

Figure 4.7 shows a line graph with the values of z for (1,1, z)-cuboids (1 < z <
10) on the horizontal axis, and the percentage of lattice unfoldings without each
type of contact on the vertical axis. From these results, we can observe that in an
(xL,yL,zL) cuboid, as the values of z increase while keeping = and y fixed, the
percentage of non-overlapping unfoldings decreases.

There are cuboids with different side lengths that have the same surface area.
The percentages of non-overlapping lattice unfoldings for cuboids with the same
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Figure 4.4: MOPUs in Archimedean 29-gonal prisms (excluding those with rota-
tional and mirror symmetry, and the three types from n = 28).

(b)

Figure 4.5: MOPUs in Archimedean 17-gonal antiprisms (excluding those with ro-
tational and mirror symmetry).

surface area are shown in Table 4.6 to 4.10.

For cuboids with surface areas of 22 and 34, those with larger volumes tend to
have a lower percentage of non-overlapping edge unfoldings. However, this tendency
does not appear for cuboids with surface areas of 28, 30, and 32. These results
indicate that, even for cuboids with the same surface area, a larger volume does not
necessarily lead to a lower percentage of non-overlapping lattice unfoldings.

Figure 4.6: MOPUs in Archimedean 18-gonal antiprisms (excluding those with ro-
tational and mirror symmetry, and the three types from m = 17).
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Table 4.5: The number and percentage of non-overlapping lattice unfoldings for
cuboids.

No faces-in-touch No edges-in-touch No vertices-in-touch

cuvoits [ 171] 121171 (pmeien ey ) | #0100 [ (e ) Trecon | #010P0 [ # (i) [ Pec0 | #000P0 | # (e [Pec0
(LLD 8 12] 6 384 0 384 [ 100.00 0 384 [ 100.00 0 384 100.00
(1,1,2) 12| 20| 10 12,124 0 12,124 100.00 0 12,124 100.00 32 11,484 94.72
(1,1,3) 16| 28| 14 240,304 16 240,240 99.97 80 238,432 99.22 304 212,920 88.60
() 20 36] 18 3,708,380 80 3,705,820 | 99.93 512 3,644,600 | 9828 1232 3.075.400 | 82.93
(1,1,5) 24| 44| 22 19,206,176 208 19,156,592 99.90 1,504 47,970,720 97.49 3,408 38,043,936 77.32
(1,1,6) 28 52 26 502,188,796 164 501,487,310 | 99.88 3,808 573,122,568 | 96.78 8448 124,509,028 | 71.68
(1,1,7) 32| 60| 30 6,671,469.328 1,104 6,663,017.440 99.87 9,360 13: 96.08 20,432 4,407,661,888 66.07
(1,1,3) 36| 68 34 71,772,242,780 2704 | 71679,140,716 | 99.87 22,912 95.34 10456 | 43445829708 | 60.53
(1,1,9) IEAES 747,116,459,968 6,544 | 746,143.953.328 | 99.87 55,584 94.55 119,504 | 412,096,369,696 | 55.16
(1,1,10) 44| 74| 42 7,593,452,118,844 15,760 | 7,583,621,450,924 99.87 134,368 93.70 288,416 | 3,797,487,539,408 50.01
(1,2,2) 18| 32| 16 1,675,184 0 1,675,184 100.00 32 1.5 6 92.74 128 73.35
(1,2,3) 20 4] 22 131,478,632 544 130,212,292 | 99.04 1,648 11,177,796 | 84.56 3312 57.54
(1,2,4) 30| 56| 28 7,692,072,382 14,920 7.528,985,598 97.88 32,048 5,970,306,978 77.62 52,960 45.96
(1,2,5) 36] 68 34 375,631,047,802 141,816 | 364,028,460,124 | 96.01 201,736 | 270,654,176,916 | 72.05 149,552 X 3749
(2,2,2) 26| 48| 24 761,804,472 0 761,804,472 100.00 240 522,735,564 68.62 432 304,891,548 40.02
(2,2,3) 31] 64] 32 203,758,066,112 5824 | 196470,177.268 | 96.42 10,302 | 109,840,348502 | 5391 34,704 | 48,990,450,676 | 24.04
(1,3,3) 32] 60] 30 37,054,664,336 18,656 | 35,759,106,992 | 96.50 53824 | 26,133,414976 | 7054 87,057 | 14,279,985,328 | 3854
(V2,v2,v2) 4] 24 12 80,352 0 80,352 100.00 0 100.00 0 80,352 100.00
(V2,v2,2v2) 22| 40| 20 36,045,144 64 3 99.35 116 90.54 832 72.55
(ﬁ V2, 3\5) 30| 56 | 28 8,178,632,284 9,744 98.44 21,824 83.75 35,440 55.99
(V2,v2,4v2) || 38] 72 36 1,332,665,934,528 180,696 97.89 360,912 78.31 580,353 44.60
(v2,2v/2,2v/2) 34| 64| 32 207,761,826.744 13,296 95.45 45,776 65.28 76,432 32.60
(vV5,v/5,v/5) [ 32] 60] 30 59,902,047,024 336 | 58,033,038468 | 96.88 2520 | 35216407,008 [ 58.79 3,600 | 14,389,530,720 | 24.02

100
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20| |®:No edgess-in-touch
m: No vertices-in-touch

The percentage of lattice unfoldings
without each type of contact

1 2 3 4 5 6 7 8 9 10
(1,1, z)-cuboids

Figure 4.7: The percentage of lattice unfoldings without each type of contact for
(1,1, z)-cuboids.

4.3 Summary and discussion on the number of
non-overlapping unfoldings

In this chapter, we presented results on counting the number of non-overlapping un-
foldings in edge unfoldings of convex regular-faced polyhedra and lattice unfoldings
of cuboids.

First, we proposed an algorithm for counting non-overlapping unfoldings using
Zero-suppressed Decision Diagrams (ZDDs) and the subsetting method. In this pro-
cess, we focused on the minimal overlapping partial unfoldings (MOPUs), which were
enumerated by rotational unfolding. We then conducted computational experiments
on the edge unfoldings of several Archimedean solids, Johnson solids, Archimedean
prisms, and Archimedean antiprisms, counting the number of non-overlapping edge
unfoldings.
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Table 4.6: The percentage of non-overlapping lattice unfoldings for a cuboid with a

surface area of 22.

Cuboids || Volume || No faces-in-touch | No edges-in-touch | No vertices-in-touch
(1,1,5) 5 99.90 97.49 77.32
(1,2,3) 6 99.04 84.56 57.54

Table 4.7: The percentage of non-overlapping lattice unfoldings for a cuboid with a
surface area of 28.

Cuboids Volume || No faces-in-touch | No edges-in-touch | No vertices-in-touch
(1,2,4) 8 97.88 77.62 45.96
(v2,v2,3v2) 6v/2 98.44 83.75 55.99

As a result, we showed that the percentage of non-overlapping edge unfoldings
is influenced not by the number of MOPUs, but by the number of faces consti-
tuting each MOPU. Additionally, for n-gonal Archimedean prisms and m-gonal
Archimedean antiprisms, we observed that increasing the values of n and m de-
creases the percentage of non-overlapping edge unfoldings.

Next, we extended the same approach to counting non-overlapping lattice un-
foldings of cuboids, we counted unfoldings without faces-in-touch, edges-in-touch,
or vertices-in-touch. As a result, we found that cuboids with increasing side lengths
tend to have a lower percentage of non-overlapping lattice unfoldings. However, for
cuboids with the same surface area but different volumes, there was no clear relation-
ship between volume and the percentage of non-overlapping unfoldings. Contrary to
expectations, increasing the volume did not necessarily lead to a higher percentage
of non-overlapping unfoldings.

On the other hand, for the Rhombicosidodecahedron, Snub dodecahedron, and
Rhombitruncated icosidodecahedron in Table 4.1, as well as J68 to J82 in Table 4.2,
the enumeration of MOPUs resulted in a timeout, making it impossible to count
the number of non-overlapping edge unfoldings. Furthermore, even if the MOPU
enumeration succeeds, as seen in the case of J48 in Table 4.2, counting the number
of non-overlapping unfoldings can still result in a timeout. This suggests that when
MOPU enumeration results in a timeout, counting the number of non-overlapping
unfoldings is also likely to result in a timeout. Therefore, improving the efficiency
of both the rotational unfolding and the algorithm for counting non-overlapping
unfoldings becomes essential. One possible improvement lies in refining the pruning

Table 4.8: The percentage of non-overlapping lattice unfoldings for a cuboid with a
surface area of 30.

Cuboids Volume || No faces-in-touch | No edges-in-touch | No vertices-in-touch
(1,1,7) 7 99.87 96.08 66.07
(1,3,3) 9 96.50 70.54 38.54
(v/5,v/5,V5) 5v5 96.88 58.79 24.02
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Table 4.9: The percentage of non-overlapping lattice unfoldings for a cuboid with a
surface area of 32.

Cuboids Volume | No faces-in-touch | No edges-in-touch | No vertices-in-touch
(v2,2V/2,2V/2) 8v/2 95.45 65.28 32.60
2,2,3 12 96.42 53.91 24.04

Table 4.10: The percentage of non-overlapping lattice unfoldings for a cuboid with
a surface area of 34.

Cuboids || Volume || No faces-in-touch | No edges-in-touch | No vertices-in-touch

(1,1,8) 8 99.87 95.34 60.53

(1,2,5) 10 96.91 72.05 37.49

process. In the current rotational unfolding, pruning based on distances is imple-
mented, yet the estimation of the sum of the circumradii of the remaining faces
remains insufficient. To address this limitation, by calculating the reachable dis-
tances for the remaining faces using techniques such as dynamic programming, it
becomes feasible to perform pruning at an earlier stage.

Additionally, this study only considered polyhedra where all edge lengths are
equal. As a future direction, extending this method to more general convex polyhe-
dra would be interesting, especially to examine how the results of Schevon, as shown
in Figure 1.6, would change.






Chapter 5

Conclusion

In this study, we showed the existence of overlapping unfoldings for polyhedra and,
in cases where overlapping unfoldings exist, computed the number of overlapping
and non-overlapping unfoldings. We achieve this by using the rotational unfold-
ing algorithm, which efficiently determines whether overlaps exist, along with an
enumeration algorithm based on MOPUs obtained through rotational unfolding.

The ultimate goal of this research is to solve the problem mentioned in Con-
jecture 1.1: “For any convex polyhedron, there exists at least one non-overlapping
edge unfolding.” This problem is known as Diirer’s problem. To solve this problem,
either of the following approaches must be taken [DOO07]:

Approach 1 Discover a convex polyhedron that has only overlapping edge unfold-
ings.

Approach 2 Develop an edge unfolding algorithm that can be applied to all convex
polyhedra.

As an idea for addressing Approach 1, determining the existence of overlaps
in various convex polyhedra can be considered. In this method, the following two
challenges are proposed as future works to bridge the gap between the current state
and the intended solution.

The first challenge, as mentioned in Section 4.3, is “extending the proposed
method to polyhedra that do not have equal-length edges.” As shown in Propo-
sition 2.2, the current rotational unfolding method determines overlaps in partial
unfoldings by checking the overlaps of the circumcircles of the faces. However, this
approach cannot be applied to faces with more general shapes. Therefore, it is nec-
essary to precisely compute edge intersections between faces located at the ends of
partial unfoldings.

The second challenge is “generating random convex polyhedra.” When generat-
ing random convex polyhedra, edge lengths and face angles may become irrational
numbers. Developing a method to retain and compute with these irrational values
remains an important task.

As an idea for addressing Approach 2, classifying convex polyhedra and devis-
ing unfolding algorithms for each classification can be considered. The following
discusses future works in pursuing this approach.
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First, there are uncountably infinite convex polyhedra. However, according to
Steinitz’s theorem [Ste22], all convex polyhedra can be represented as polyhedral
graphs (or 3-vertex-connected planar graphs). This allows us to organize convex
polyhedra into a countably infinite set by considering them as polyhedral graphs.
Moreover, by limiting the number of vertices to at most k, we can classify them into
a finite set of polyhedral graphs, enabling enumeration.

Thus, the first task is the classification of polyhedral graphs. Classification
should be performed based on various features such as vertex degrees, face shapes,
and symmetries.

Next, for each classified polyhedral graph, existing edge unfolding algorithms
should be applied if available. If no suitable algorithm exists, a new algorithm for
generating non-overlapping edge unfoldings must be developed. This approach is
expected to lead to a comprehensive edge unfolding algorithm for convex polyhedra.

The findings of this study represent a significant step toward deepening our
understanding of the edge unfolding problem for polyhedra. However, substantial
challenges remain in solving Diirer’s problem. We hope that addressing the tasks
outlined in the proposed approaches will help bridge this gap in future research.
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Additional drawings

A.1 Additional drawings for the Johnson Solids
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Figure A.2: List of MOPEs in J21.
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A.1. ADDITIONAL DRAWINGS FOR THE JOHNSON SOLIDS
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Figure A.6: List of MOPEs in J33.
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Figure A.10: List of MOPEs in J40.
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Figure A.12: List of MOPEs in J42.
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Figure A.13: List of MOPEs in J43.
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Figure A.20: A MOPE in J55.
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Figure A.21: A MOPE in J56.
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Figure A.22: A MOPE in J57.
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Figure A.24: A MOPE in J59.
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Figure A.26: A MOPE in J61.
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A.2 Additional drawings for the Archimedean prisms
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Figure A.32: Overlapping edge unfoldings in Pg(25) to Pr(28) consisting of faces
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Figure A.33: Enlarged and simplified image of Figure 3.8.
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A.3 Additional drawings for the Archimedean an-
tiprisms
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Figure A.34: Overlapping edge unfoldings in P4(13) to P4(16) consisting of faces
{f37FBaf57f47FT7f0af17f2}'
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Figure A.35: Enlarged and simplified image of Figure 3.12.






Appendix B

Detailed verification of
boundary-boundary in touch

In this chapter, we present a method to check boundary-boundary in touch using
coordinate transformations. Let’s consider a linkage, as shown in Figure B.1, where
each edge has unit length and consists of k+ 1 joints. We set the coordinate of py to
(0,0) and label the vertices from p; to px. We also set the coordinate of p; to (1,0).
Here, the joint angles are represented as (01, 60s, ..., 0;_1) and range from —7 to 7. A
positive angle indicates counterclockwise rotation, while a negative angle indicates
clockwise rotation. For a given point p, the coordinates x(p) and y(p) denote its z
and y coordinates, respectively. The coordinates of the point p; = (z(p;),y(p;)) can
be calculated using the following equation:

x(p;) cosfly —sinfy 1| [cosfy —sinfy 1 cosBi_1 —sinf_; 1| |1
y(p;)| = |sinfy cosfy 0| |sinfy cosfs O ...|sinbr_1 cosfp_1 0] [0 (B.1)
1 0 0 1 0 0 1 0 0 1 1

To illustrate, we consider J66-(8) as shown in Figure A.27. We label the points

counterclockwise as pg,p1,...,ps, as shown in Figure B.2. Here, each edge has a
length of 1 and joint angles are (61, 02, 03, 04,05, 05, 07) = (—%7 111—2“, 15> 15 5 111—2“, —%).
Our goal is to confirm that the coordinate of pg is (0,0). Using equation (B.1), we
calculate it as follows:

x(ps) cos (%) —sin(—%) 1 cos (—F) —sin(—%) 1] [1
{y(pg)] = [sin —7%) cos(—% O] {sin (—%) cos(—% O] {(1)] =

0 0 1

—~

0
0
1

Since the coordinate of pg is (0,0), this confirms that py and ps are vertex-vertex
in touch.
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P1(1,0)

Figure B.1: Example of a linkage with arbitrary joint angles and unit edge lengths
of 1.

Figure B.2: Verifying that J66-(8) in Figure A.27 has vertex-vertex in touch.



Appendix C

Additional proofs

C.1 Proof of Claim 3.7

Proof. (The coordinates of b}') Let ps be the intersection point of the perpen-
dicular line from point ¢! to the z-axis and the perpendicular line from point ¢
to the y-axis. The coordinate of point ¢} is (=1 — sinf, 1 — cos ) since AtT pstl is
a right triangle with an oblique side of length 1. Let p, be the intersection point
of the auxiliary line drawn parallel to the y-axis with respect to point ¢ and the
auxiliary line extending the line segment b{l’f 2tT" in the direction of T, ps be the
intersection point of the auxiliary line drawn perpendicular to the line segment ¢2 b5
at point ¢ and the line segment t'p3; and pg be the intersection point of the per-
pendicular line from point bF to the z-axis and the perpendicular line from point
t to the y-axis. The angle ZtTtl'p, is 0 since tXpy//pst?, Lpstit is 0 since it is
the exterior angle of Fp, Zpstlps is /2 — 20 since Zpstlp, is a right angle, and
LbBtlpg is 20 since ZbJtlps is a right angle. As a result, the coordinate of point b
is (—1 —sinf + cos 20,1 — cos f — sin 26) since AbEpgtl is a right triangle with an
oblique side of length 1.

(The coordinates of bP) Let p; be the intersection point of the perpendicular
line from point bF to the z-axis and the perpendicular line from point b¥ to the
y-axis, and pg be the intersection point of the auxiliary line drawn perpendicular
to the line segment ¢t1b5 at point bF and the y-axis. The angle ZbPbPpg is 6 since
it is the exterior angle of Fr, Zpsbftl is m/2 — 20 since AbBpstl is a right tri-
angle, ZpsbEpr(= ZpsbEps) is 20 since Lpgbftl is a right angle, and ZbPbfp; is
30 by adding ZbPbfps and Zpgbfpr. As a result, the coordinate of point bF is
(—1 —sinf + cos 20 + sin 30,1 — cos § — sin 20 + cos 36) since AbPp;bF is a right
triangle with an oblique side of length 1. O

C.2 Proof of Lemma 3.6

Proof. (i) For a point p, the x and y coordinates are denoted as z(p) and y(p),
respectively. We here show that b5 is in the third quadrant, that is, x(bF) < 0 and
y(b¥) < 0. From Claim 3.7, x(bF) = —1 — sinf + cos 26. Since —sinf < —sin0 (=
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0), cos20 < cos0 (=1)in 0 < 6 < 27/29, we obtain
z(bF) = —1 —sinf + cos20 < —1 —sin0 + cos 0 = 0.
Next we show y(bF) < 0. Let a function f(f) = 1 — cosf — sin20. We show that
f(8) is a monotonically decreasing function in 0 < 6 < 27/29, and f(0) is equal to
0. The differentiation of f(#) yields
f'(0) = sinf — 2 cos 260
=sinf — 2(1 — 2sin?0)
= 4sin®0 +sin§ — 2

1 1
—4(sin29+sin€+a> _E_Q

1\*> 33
=4 |sinf+-) ——.
(sm +8) 16

To show f’(6) is a monotonically increasing function in the range of 0, and f’(27/29)
is less than 0, we consider the second derivative of f(6). The differentiation of f’(6)
yields

1
1"(6) =38 (sinQ + g) cos 6.

Since sin# > sin0 (= 0), cos@ > cos (27/29) (=~ 0.97) > 0, f'(0) is greater than 0,
and f’(0) is a monotonically increasing function in the range of 6. Since f’'(27/29) (~
—1.60) < 0, f'(0) is less than 0, and f(#) is a monotonically decreasing function.
Since f(0) =1 — cos0 — sin 0 = 0, the following equation holds.

y(b§) =1 — cosf —sin260 < 0
Thus, b is in the third quadrant.

(ii) We here show that bP is in the first quadrant, that is, z(b%) > 0 and y(b?) > 0.
From Claim 3.7, z(b?) = —1 — sinf + cos 20 + sin30. To show z(b¥) > 0, let a
function f(0) = —1 — sin @ + cos 26 + sin 36, we show that f(6) is a monotonically
increasing function for 0 < 6 < 27/29, and f(0) in equal to 0. The differentiation
of f(0) yields

= — (—(sin“ 8 + cos —sinf + (cos” 6 — sin 4+ (3sinf — 4 sin
16 j& 20 29 0 29 29 0 39

d
= @(2 sin@ — 4sin® 0 — 2sin” 0)
= 2cosf — 12sin* @ cos § — 4sin 6 cos
= 2cosf(1 — 6sin®§ — 2sin ).
Since 2cos® > 2cos (27/29) (= 0.97) > 0, —6sin?f > —6sin? (27/29) (~ —0.27),
and —2sinf > —2sin (27/29) (~ —0.43), we obtain

f'(0) = 2cos (1 — 6sin® § — 2sin 0)

2 2 2
> 2cos2—79T (1 —6sin2£ —2sin£> ~ 057> 0.
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Hence, f(0) is a monotonically increasing function in the range of 6. Since f(0) =
—1 —sin0 4+ cos 0 + sin 0 = 0, the following equation holds.

z(bf) = —1 —sin @ + cos 20 + sin 30 > 0

Next we show y(bP) = 1 — cos@ — sin20 + cos 30 > 0. Since —cosf > —cos0 (=
—1), —sin20 > —sin (47/29) (= —0.41), and cos 360 > cos (67/29) (=~ 0.79) in the
range of 6, we obtain

y(bP) =1 — cos @ — sin 20 + cos 36

47 o6
1— — sin — — =~ 0. .
> cos (0 — sin 29 + cos 59 037 >0

Thus, b? is in the first quadrant.

(iii) Let py be an intersection point of the perpendicular line from point b to the
y-axis and y-axis; that is, the coordinates of py are (0,1 — cosf — sin20). We can
show Lemma 3.6 (iii) by the following claim.

Claim C.1. The length of the line segment popy is longer than that ofpgbgl.

The length of the line segment bgpg is not zero because of the condition (i).
To show Claim C.1, we show p,bl' /bBp, is greater than popy /bEpy. pablt /bPp, and
pap1/bFps can denote

prgl ~ 0—(1—cosfl —sin20) —1+cosf +sin20  pop;  cos30

bPps 00— (—1—sinf+cos20) 1+sinf—cos20 * bfp, sin30°

Therefore, we here show that the following equation holds.

—1 + cos 8 + sin 26 - cos 30
1 +sinf — cos 20 sin 360

(C.1)

Since 1 + sinf — cos20 > 1 +sin0 — cos0 = 0 and sin30 > sin0 = 0 in the range
of 6, we can multiply both sides of equation (C.1) by (1 + sin 6 — cos 26) sin 30, and
obtain

(—1 4+ cos# + sin 26) sin 30 < cos 36(1 + sin 6 — cos 26). (C.2)

To show the equation (C.2), we subtract the right side from the left side, and we
define a function f(0) = (—1 + cosf + sin 20) sin 30 — cos 30(1 + sin @ — cos 20). We
show that f(6) is less than 0. Here, we partition the cases based on the value of
6: one where 6 is in the range 27/61 < 6 < 27/29, and the other where 6 is in the
range 0 < 6 < 27/62. When 27/61 < 6 < 27/29, we can demonstrate through a
numerical calculation for each corresponding value of n that f(6) is less than zero!.
In the range of 0 < 6 < 27/62, we differentiate the function f(#) and use the result

to provide an analytical proof as follows.

I'We use WolframScript 1.11.0 for the numerical calculations.
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The differentiation of f(0) yields

d
f'(0) = — (—sin 36 + sin 36 cos 6 + sin 30 sin 26 — cos 30 — cos 36 sin 6 + cos 36 cos 20)

do
= dil@ (—sin 30 — cos 360 4 sin 36 cos € — cos 360 sin O + sin 36 sin 26 + cos 36 cos 20)
— diZH (—sin 360 — cos 360 + sin (30 — ) + cos (360 — 20))
= (—sin 36 — cos 360 + sin 20 + cos 0)

= —3cos30 + 3sin 30 + 2 cos 20 — sin 6
= —3(4cos®§ — 3cosf) + 3(3sinf — 4sin® ) + 2(cos* # — sin? ) — sin b
= —12(cos® @ — sin®#) + 9(cos # + sin #) + 2(cos® § — sin? §) — sin §
= —12(cos 6 + sin 6)(cos? @ — cos @ sin f + sin® @) + 9(cos @ + sin 0)
+ 2(cosf + sin#)(cos @ — sin ) — sin 6
)

= —12(cos 8 + sin6) (1 - %sin 26) + 9(cosf + siné

+ 2(cosf + sin#)(cos @ — sinf) — sin 6
= (cos @ +sinf)(—12 4 6sin20 + 9 + 2cosf — 2sinf) — sin

= sin <0+ %)(65in20+20086—251n9—3) —siné.

Let a function g(6) = 6sin20 + 2 cos —2sin# — 3. Since sin (§ + 7/4) > sinnw/4 (~
0.71) > 0, and sinf < sin0 (= 0), if g(0) is less than 0, we can say f'(6) < 0. We
show that g(6) is a monotonically increasing function in 0 < 6 < 27/62, g(27/62)
is less than 0. The differentiation of g(f) yields

g'(0) = 12cos20 — 2sinf — 2 cos b
= 12cos 260 — 2(sinf + cos 6)

= 12 cos 20 — 2/2sin <6+ %)

To show ¢'(6) is a monotonically decreasing function in the range of 6, and ¢'(27/62)
is greater than 0, we consider the second derivative of g(¢). The differentiation of
g'(0) yields

§"(6) = —245in260 — 2v/2 cos (9 n %)
Since sin26 > sin0 (= 0), cos (6 +m/4) > cos (27/62 + 7/4) (=~ 0.88), ¢" () is less
than 0, and ¢'(f) is a monotonically decreasing function in the range of 6. Since

§'(2m/62) ~ 9.56, ¢'(#) is greater than 0, and g(f) is a monotonically increasing
function. Since ¢(27/62) ~ —0.004, the following equation holds.

g(f) = 6sin26 + 2cosf —2sinf —3 <0

Therefore, f'(0) is less than 0, and f(#) is a monotonically decreasing function in
0 <60 <2m/62. Since f(0) = (=14 cos0+sin0)sin0 — cos0(1 + sin 0 — cos0) = 0,
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the following equation is hold.
f(0) = (=1 + cos @ + sin260) sin 36 — cos 30(1 + sinf — cos26) < 0

Thus, the length of the line segment pop; is longer than that of pgb{;l. m

C.3 Proof of Claim 3.11

Proof. (The coordinates of b?) Let p, be the intersection point of the perpendic-
ular line from point b? to the z-axis, and ps be the intersection point of the auxiliary
line extending the line segment t2¢7 in the ¢ direction and the line segment 7 2.
The angle ZpstTv? is 7/3 — 0 since ZtItThP is 7/3, and the ZbPtTp, is 6 since
ZpstTpy is /3. As a result, the coordinate of point b is (—1 + cos @, — sin #) since
AbBpotT is a right triangle with an oblique side of length 1.

(The coordinates of b?) Let p, be the intersection point of the perpendicular line
from point b% to the y-axis and the perpendicular line from point b? to the z-axis,
ps be the intersection point of the auxiliary line extending the line segment b5b5 in
the bP direction and the line segment t10F, and pg be the intersection point of the
auxiliary line extending the line segment bFbP in the bP direction and the z-axis.
The angle Zb8bPp, is divided into two cases concerning the value of n.

[For 19 < n < 24] The angle Zt}vPps is 7/3—0 since ZpsbPbP is the exterior angle of

Fg, Zp:bBtT is m/2—0 since AbPpotT is aright triangle, and ZbZbPp, is 20— /6 since

ZLpsbBb8 — £t 0B ps+ ZtTbBtT + /pobPtT = 71— (7/3—0)+7/3+(7/2—0) = 20—7/6.

As aresult, the coordinate of point b is (—1 + cos € + sin (20 — 7/6), — sin 6 + cos (20 — 7/6))
since AbPp,bP is a right triangle with an oblique side of length 1.

[For n > 25] The angle Zb8bPtT is /34 0 since ZpghPtT + Z/p1bPps = 7/3+ 0, and
ZpsbPbE is m/6—20 since LpbPtT — /tTHPbS =7 /2—0— (7/3+0) = 7/6—20. As a
result, the coordinate of point b% is (—1 + cos § — sin (/6 — 20), — sin 6 + cos (7/6 — 20))
since AbPpybP is a right triangle with an oblique side of length 1. Since — sin (7/6 — 260) =
sin (20 — 7/6), and cos (7/6 — 20) = cos (20 — 7/6), the coordinate of point bF can

be transformed into (—1 + cos @ + sin (20 — 7/6), —sin 6 + cos (20 — 7/6)).

(The coordinates of p;) The equation of the line with points b2 and b is

=227 NI g B :L%)x—— cosf))—sin
V= Sam e @O H0D) = B e (- Lrcost)) —sind. (€
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Here, by substituting y = y(p;) = 0 into the equation (C.3), we get

sin (29 — %)
CoS (20 - %)

sin @ sin (29 - %)
= +cosf —1
CoS (20 — %)
_ sinfsin (20 — %) + cosf cos (20 — %) .
B CoS (20 — %)

_ cos(@— (26—%)) .
cos (29 — %)

CoS (% — 9) B

cOS (29 — %)

z(p1) = (y(p1) +sin0) — 1+ cost

C.4 Proof of Lemma 3.10

Proof. (i) We here show that b¥ is in the third quadrant, that is, z(b) < 0 and
y(bP?) < 0. From Claim 3.11 z(b?) = —1 + cos 6. Since cos < cos0 (= 1) from the
range of 6, we obtain

z(bY) < =1+ cos0 = 0.

From Claim 3.11 y(bP) = —sinf. Since —sinf < —sin0 (= 0), y(b¥) < 0. Thus,
bB is in the third quadrant.

(ii) We here show that the y-coordinate of point bF is positive, that is, y(b%) > 0.
From Claim 3.11 y(b%) = —siné + cos (20 — 7/6). Since —sinf > — sin 27/19(~
—0.32), cos260 > cos4mr/19(~ 0.78), and sin 20 > sin (= 0) from the range of 0, we
obtain

y(bF) = —sin 6 + cos <29 - %)

= —sin0+cos29cos% —l—sinZGSin%

C2r W3 4w 1.
>—SIDE+7C081—9+§Sln0~0.35>0.

Thus, y(b%) is positive.
(iii) We here show that the z-coordinate of point p; is greater than —1 and less than

0, thatis, z(p1) > —1l and z(p;) < 0. From Claim 3.11 z(p,) = cos (7/6 — 8)/ cos (20 — 7/6)—
1. First, we show z(p;) > —1, that is, cos (7/6 — )/ cos (20 — 7/6) > 0. Since the
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following inequalities hold:

O<7T 2T _77T <7r €<7T 0<_7T)<7T
6 19 \ 114) — 6 6 6 2

T T T T 2t ow 5 T
—— ——= (=== 20— —-—<2——— [=— —
<V 6( >< ( )<2’

we obtain

cos (% - 9) >0 cos (29 - %) > 0. (C.4)
Thus, z(p;) > —1.
Next, we show z(p;) < 0, that is,
cos (% — 9)

cos (29 - %)

—-1<0. (C.5)

Since cos (29 — %) > 0 according to equation (C.4), by multiplying both sides of
equation (C.5) by cos (20 — %), we obtain

cos <% —8) — coS (20— %) < 0.

We define a function f(#) = cos (7/6 — @) — cos (20 — 7/6). We show that f(0) is a
concave down function from 0 < 6 < 27/19, and both f(0) and f(27/19) are less
than 0. The differentiation of f(6) yields

() = sin (% - 9) +2sin (20 _ %)

To show f’(6) is a monotonically increasing function, f’(0) is less than 0, and
f'(2w/19) is larger than 0, we consider the second derivative of f(#). The dif-
ferentiation of f’(0) yields

f"(0) = — cos (% — «9) + 4 cos (29 — %)

= —COSZCOSQ—sinzsin@—1—4(:OS2QCOSE—l—43ir12(9sinz
6 6 6 6

3 1
= —\/T—COSH - Esin9+2\/500829+251n26
3 1
= —\/T_COSH — §sin9+2\/§(30529— 2v/3sin? 6 + 4 sin 6 cos

1
=sin 6 (4C089—2\/§sin0— 5) + cos (2\/§COSQ— ?) )

Since 4cosf < 4cos (2m/19) (= 3.78), —2/3sinf < —2v/3sin (27/19) (=~ —1.12),
and 2v/3 cos > 2v/3 cos (211/19) (= 3.27), we obtain

4cosf —2v/3sinf —1/2~ 215> 0

2v/3 cos ) — \/75 ~ 2.40 > 0.
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Hence, f”(6) > 0 and f'(#) is a monotonically increasing function. Since f'(0) =
sin (7/6)+2sin (—7/6) = —0.5 < 0 and f/(27/19) = sin (27/19 — 7/6)+2sin (47 /19 — 7/6) ~
0.46 > 0, f(#) is a concave down function. Herein, f(0) = cos (7/6) — cos (—7/6) =
0, and f(27/19) = cos(n/6 —27/19) — cos (47/19 — 7/6) ~ —0.009, f(0) < O.
Thus, z(p1) < 0. O
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