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Polyhedral Graphs via Degree Sequences
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1 Introduction

A polyhedral graph is a simple graph that is 3-
connected and planar. This class of graphs cor-
responds exactly to the vertex-edge graphs (or 1-
skeletons) of convex polyhedra, as stated in the fol-
lowing classical theorem.

Theorem 1 (Steinitz’s theorem [9, 28]). A graph
is the 1-skeleton of a convex polyhedron if and only
if it is simple, planar, and 3-connected.

In graph theory, classifying graphs is a stan-
dard way to understand their structural proper-
ties. Convex regular-faced polyhedra―such as the
Platonic, Archimedean, and Johnson solids―are
one of the most well-studied classes of polyhedral
graphs [5, 14]. These polyhedral graphs are typi-
cally classified according to geometric features such
as face regularity and global symmetry. In addi-
tion, polyhedral graphs can also be classified based
on combinatorial parameters such as the number
of edges or vertices. Duijvestijn and Federico enu-
merated the number of non-isomorphic polyhedral
graphs with 6 to 26 edges [7, 6]. The numbers of
non-isomorphic polyhedral graphs with 4 to 18 ver-
tices are also known [27]. More recently, Maffucci
has proposed a classification approach for polyhe-
dral graphs based on their degree distributions―
that is, how many vertices have each degree in the
graph. In 2022, he showed―via degree distribution
analysis―that there are exactly three polyhedral
graphs whose complements are also polyhedral [18].
In 2024, he showed that only eight degree distribu-
tions are forcibly polyhedral [19]. Maffucci’s results
suggest that degree distributions provide a useful
basis for classifying polyhedral graphs. Polyhedral
graphs have thus been classified in a variety of ways.
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Figure 1: A cube with truncated corners and its
overlapping unfolding [21].

Edge unfoldings are structure closely associated
with polyhedra. Here, an edge unfolding is a flat
polygon obtained by cutting along the polyhedron’s
edges and unfolding the surface onto a plane. De-
pending on the shape of the polyhedron and how it
is edge unfolded, the resulting unfolding may have
overlaps, i.e., two distinct faces overlap, or their
boundaries are in touch (see Figure 1). Shephard
proposed the following conjecture about edge un-
foldings.

Conjecture 2 ([25]). For any convex polyhedron,
at least one non-overlapping edge unfolding exists.

This conjecture is called Dürer’s problem. The
name comes from a sketch in “Underweysung der
Messung mit dem Zirckel und Richtscheyt” [8],
written by Albrecht Dürer in 1525, which is often
regarded as the origin of edge unfoldings [5]. One
approach to this problem is to develop an edge un-
folding algorithm that works for all convex poly-
hedra. Schlickenrieder proposed an edge unfolding
algorithm that successfully applies to 60, 000 ran-
domly generated convex polyhedra [24]. However,
Lucier showed that there exists a polyhedron that
cannot be unfolded without overlap using Schlick-
enrieder’s proposed algorithm [17]. We note that
this polyhedron can still be unfolded without over-
lap by a different method.
Accordingly, edge unfolding algorithms are now

being developed for specific families rather than for
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general convex polyhedra. In particular, prisma-
toids have received increasing attention in recent
years [2, 3, 22, 23]. Here, prismatoids are convex
polyhedra whose vertices lie on two parallel planes;
this class includes prisms and pyramids. These
works introduce structural constraints on prisma-
toids―for example, relations between top and bot-
tom faces―and propose algorithms for each case.
This focus is likely due to the structural simplic-
ity of prismatoids. Each prismatoid is determined
by its top and bottom faces―typically an t-gon
and an b-gon―so varying t and b naturally yields
a wide range of instances. In contrast, few fami-
lies are known―beyond prismatoids―that support
systematic variation of parameters such as t or b.
Accordingly, the development of edge unfolding al-
gorithms for these more general classes remains lim-
ited.

Our contributions We propose a new method
for classifying polyhedral graphs based on their de-
gree distributions, following the idea introduced by
Maffucci. This approach is motivated by the lack of
known parameterized families among polyhedra be-
yond prismatoids. To this end, we define the degree
distribution of a graph with n vertices as follows:

dc11 , dc22 , . . . , dckk where

k∑
i=1

ci = n. (1)

Here, each term dcii indicates that the graph has
ci vertices of degree di. In this study, we specifi-
cally focus on polyhedral graphs with the following
degree distributions.

dn−x
1 , (n− y)c2 , dc33 , . . . , dckk

where 0 ≤ x, y ≤ n, x, y ∈ N,
k∑

i=2

ci = x.
(2)

Figures 2,3, and4 illustrate example families of
polyhedral graphs that follow this degree distribu-
tion form. The graphs are visualized to make their
structure easier to see. Note that, for each n, the
graphs shown are the only non-isomorphic polyhe-
dral graphs with this degree distribution.
We further organize the families by introducing

directed edges that represent structural transitions
across increasing values of n. This relation is de-
fined by the following steps (see Figure 5):
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Figure 2: Polyhedral graphs with degree distribu-
tion 3n−3, (n− 1)1, 42.

Step 1. Given a polyhedral graph with n vertices,
add a new vertex of degree d1 and connect it
to the graph.

Step 2. If the resulting graph is a polyhedral
graph with n + 1 vertices in the same degree
distribution form, draw a directed edge from
the n-vertex graph to the n+ 1-vertex graph.

Note that when a new vertex is added, if the re-
sulting face becomes flat (i.e., lies in a plane), the
corresponding diagonal edge is removed from the
graph. Figures 6,7, and 8 show example directed
graphs formed by connecting polyhedral graphs ac-
cording to the above procedure.
In this way, our approach provides a unified

framework for classifying polyhedral graphs based
on their degree distributions and organizing them
into structured families. By visualizing their struc-
tural transitions, we clarify how polyhedral families
evolve as the number of vertices increases. This
perspective offers a foundation for future studies of
edge unfolding algorithms, including implications
for future investigations into Dürer’s problem.

Structure of the paper This paper is organized
as follows. Section 2 introduces basic definitions
and notation. Section 3 outlines the motivation
behind classifying polyhedral graphs, including our
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Figure 3: Polyhedral graphs with degree distribu-
tion 3n−1, (n− 3)1.
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Figure 4: Polyhedral graphs with degree distribu-
tion 5n−5, (n− 1)1, 32, 42.

ideas related to Dürer’s problem that led to this
direction. Section 4 describes the method for ex-
tracting polyhedral graphs that conform to the de-
gree distribution structure given in equation (2).
Finally, Section 5 concludes the paper with a sum-
mary and remarks on future directions.

2 Preliminaries

Let G = (V,E) be a simple graph where V is a set
of vertices and E ⊆ V ×V is a set of edges. A graph
is said to be planar if it can be embedded in the
plane without any edge crossings, that is, if it can
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Figure 5: A vertex of degree 3 is added to the
n = 6 polyhedral graph with degree distribution
3n−3, (n − 1)1, 42 (see Figure 2). When the red
vertex lies in the same plane as the gray face, the
green diagonal is removed. The resulting graphs
correspond to the n = 7 polyhedral graphs with
the same degree distribution form.

be drawn such that no two edges intersect except at
their endpoints. A sequence of vertices ⟨v1, . . . , vk⟩
is a path if vi ̸= vj (vi, vj ∈ V, 1 ≤ i ̸= j ≤ k)
and every consecutive two vertices are adjacent. A
graph is connected if a path exists between any two
vertices of the graph. A connected graph G is k-
vertex-connected (or simply k-connected) if k < |V |
and the graph remains connected after the removal
of any set of fewer than k vertices. A graph that is
simple, planar, and 3-connected is called a polyhe-
dral graph.

A polyhedron is a three-dimensional object con-
sisting of at least four polygons, called faces, joined
at their edges. A convex polyhedron is a polyhe-
dron in which the dihedral angle between any two
adjacent faces is strictly less than π. According to
Steinitz’s theorem (Theorem 1), every polyhedral
graph corresponds to the 1-skeleton of a convex
polyhedron, and vice versa. In what follows, we
use the terms polyhedron and polyhedral graph in-
terchangeably unless otherwise noted; for instance,
we may refer to a prism graph simply as a prism.

3 Motivation for classifying
polyhedral graphs

In this section, we first present our idea related
to Dürer’s problem, which motivates our classifi-
cation of polyhedral graphs. We then explain why
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Figure 6: Organized structure of the polyhedral graphs shown in Figure 2, with degree distribution
3n−3, (n− 1)1, 42.
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Figure 7: Organized structure of the polyhedral graphs shown in Figure 3, with degree distribution
3n−1, (n− 3)1.

we adopted the degree distribution defined in equa-
tion (2) as the basis for this classification.

3.1 Our approach to Dürer’s prob-
lem

A natural approach to Dürer’s problem is to de-
velop an edge unfolding algorithm that can be ap-
plied to all convex polyhedra. However, since con-
vex polyhedra can vary greatly in size and struc-
ture, it is difficult to develop a single algorithm that
works directly in all cases. To overcome this chal-
lenge, we propose a divide-and-combine approach
to edge unfolding, as follows (see Figure 9).

Step 1. Divide the given polyhedron into several
parts, each consisting of a connected set of
faces.

Step 2. Apply an edge unfolding algorithm to
each part so that there are no overlaps.

Step 3. Combine the unfolded parts, and then
form a single edge unfolding of the original
polyhedron.

One key challenge in this approach is manag-
ing the trade-off between unfolding and combining.
As shown in Table 1, if the number of parts is in-
creased, it becomes easier to unfold each part with-
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Figure 8: Organized structure of the polyhedral graphs shown in Figure 3, with degree distribution
5n−5, (n− 1)1, 32, 42.

Figure 9: Overview of our divide-and-combine approach to edge unfolding.

out overlap, but combining them into a single un-
folding becomes significantly more difficult. Con-
versely, if the number of parts is reduced, combin-
ing them becomes somewhat easier, but the variety
of parts increases rapidly, and a non-overlapping
unfolding algorithm is needed for each. To address
this trade-off, we propose two strategies for effec-
tively dividing a polyhedron within our divide-and-
combine approach.

Strategy 1. The first strategy is to select edge-
overlap-free parts. A polyhedron is said to be edge-
overlap-free if none of its edge unfoldings results
in overlaps [16]. By definition, such parts can be
unfolded without overlap, regardless of how their
faces are connected. This flexibility in rearranging
faces makes the combination step easier to handle
within our divide-and-combine approach.

Edge-overlap-freeness has been shown for several
types of polyhedra. For example, tetramonohedra
―tetrahedra with all faces being congruent trian-
gles―have been shown to be edge-overlap-free [1].
Edge-overlap-freeness has also been fully charac-
terized for convex regular-faced polyhedra whose
edges all have the same length [4, 10, 12, 13, 26].
More recently, it has been proven that regular k-
gonal prisms for 3 ≤ k ≤ 10 are edge-overlap-free
for any height [15].

Strategy 2. The second strategy is to select parts
that can be unfolded without overlap in multiple
ways. For instance, regular k-gonal prisms can

be unfolded in a variety of non-overlapping ways,
such as those shown in Figure 10, regardless of the
values of k and height h. Having multiple non-
overlapping unfoldings allows for greater flexibil-
ity in combining parts, as different variations can
be explored. Although this condition is weaker
than edge-overlap-freeness, the ability to rearrange
faces in multiple ways can still make the combi-
nation step easier within our divide-and-combine
approach.

To make these strategies effective, the parts need
to be sufficiently large. In particular, if a polyhe-
dron can be divided into large parts that satisfy
either of the two strategies above, the combination
step can be made much easier. However, it has
remained unclear what kinds of parts are actually
suitable for such strategies. This observation led us
to focus on classifying polyhedral graphs.

3.2 Classifying polyhedral graphs by
degree distribution

Our classification is based on the structure of the
cut surface that appears when a part is removed
from a polyhedron. This surface typically forms an
k-gon, as illustrated in Figure 11. Note that the
resulting k-gon is not always planar. For instance,
in Figure 11, the cut surface in the top example lies
on a plane, whereas the one in the bottom example
does not.

Polyhedra with a k-gonal base of this kind
include well-known examples such as pyramids,
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Table 1: Trade-offs in the number of divisions in our edge unfolding algorithm. Bold entries indicate the
more favorable option in each row.

Number of divisions Few Many

Number of unfolding algorithms required Very many Relatively few
Difficulty of designing non-overlapping unfoldings Very high Relatively low
Difficulty of combining parts Relatively low Very high

Figure 10: Examples of edge unfolding variations for regular k-gonal prisms that avoid overlap regardless
of k and height h.

Table 2: Degree distributions of pyramids.

|V |
deg

3 4 5 6 7 8 9 10

4 4
5 4 1
6 5 1
7 6 1
8 7 1
9 8 1
10 9 1
11 10 1

prisms, and antiprisms (see Figure 12). Other poly-
hedra, such as prismatoids and their stacked vari-
ants, can also be viewed as parts based on a k-gonal
base (see Figure 13).

Each of these families forms a continuous se-
quence of structures, where the shape changes reg-
ularly as the number of vertices increases. To inves-
tigate such regular structural transitions, we turn
our attention to the degree distribution of polyhe-
dral graphs, inspired by an idea of Maffucci. As
an initial observation, we checked the degree distri-
butions of pyramids, prisms, and antiprisms, and
found that they follow a consistent pattern (see Ta-
bles 2 and 3). These degree distributions can be

Table 3: Degree distributions of prisms and an-
tiprisms.

Prisms

|V |
deg

3

6 6
8 8
10 10
12 12

Antiprisms

|V |
deg

4

6 6
8 8
10 10
12 12

written in the form of equation (1) as follows.

Pyramid: 3n−1, (n− 1)1

Prism: 3n

Antiprism: 4n

Based on this observation, we use the following
form as a base structure:

dn−x
1 , (n− y)c2 , (3)

where x and y are fixed integers with 0 ≤ x, y ≤ n.
Note that for prisms and antiprisms, this reduces
to the case y = n. In contrast, many polyhedra in-
clude degree values that appear with a fixed count,
independent of n. To capture such n-independent
substructures, we extend equation (3) by append-
ing constant pairs dcii , leading to the general form
in equation (2).
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Figure 11: A polyhedron (left) and the resulting
shape after removing one part (right). The red
edges indicate the cut boundary, which forms an
k-gon in each case.

Pyramid Prism Antiprism

Figure 12: Examples of polyhedra with an k-gonal
base.

4 Classification of polyhedral
graphs

In this section, we describe how to extract families
of polyhedral graphs whose degree distributions fol-
low the structure given in equation 2. The extrac-
tion consists of the following three steps:

Step 1. Enumerate all non-isomorphic polyhedral
graphs, excluding rotational and reflective
symmetries.

Step 2. For each vertex count n, determine the de-
gree distributions that appear among the enu-
merated graphs.

Prismatoid Stacked prismatoid

Figure 13: Examples of prismatoids and their
stacked combinations. The right figure shows a
structure composed of three stacked prismatoids,
corresponding to the blue, red, and black parts.

Step 3. For each n, compare the degree distribu-
tions with those for n + 1, n + 2, and so on,
and identify families that follow the structure
in equation 2.

In Step 1, we use the program nauty [20] to enu-
merate only non-isomorphic polyhedral graphs. All
computational experiments were conducted on an
M3 chip with 24GB of memory, running macOS
15.5.
Through the above extraction process, we iden-

tified a variety of sequential families of polyhedral
graphs. Among these, we focus on five represen-
tative families and provide visualizations for the
following:

• 3n−3, (n− 1)1, 42 (n ≥ 6, Figure 6)

• 3n−1, (n− 3)1 (n ≥ 6, Figure 7)

• 5n−5, (n− 1)1, 32, 42 (n ≥ 6, Figure 8)

5 Conclusion

We proposed a new method for classifying poly-
hedral graphs by their degree distributions. This
classification is motivated by our broader goal of
developing edge unfolding algorithms as a step to-
ward resolving Dürer’s problem. This classifica-
tion allows us to further investigate edge-overlap-
freeness and to develop algorithms for generating
non-overlapping edge unfoldings of polyhedra be-
yond prismatoids.
There remain several directions for future work.

First, while this paper visualized only a limited
set of families, many other degree distributions can
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also be expressed in the form of equation (2). We
plan to visualize these additional cases and reveal
their structural relationships, with the aim of iden-
tifying further families. Second, the case of ver-
tex counts n ≥ 12 has not yet been investigated.
While we used nauty to enumerate non-isomorphic
graphs, the computation did not finish within 24
hours for n = 12. However, since polyhedral graphs
are planar, isomorphism testing can be performed
in polynomial time [11]. If enumeration becomes
feasible for n ≥ 12, we may be able to identify ad-
ditional families that extend in increments of two,
such as n → n + 2 → n + 4 → . . . . Third, we
consider the task of determining how many poly-
hedral graphs correspond to a given degree distri-
bution. For instance, we observed that the dis-
tribution 5n−5, (n − 1)1, 32, 42 yields exactly one
graph for each 6 ≤ n ≤ 11. However, it is not
clear whether this pattern of uniqueness persists
for n ≥ 12. Additionally, in our visualization of
polyhedral graphs, we added a vertex of degree d1
to a graph with n vertices and drew a directed edge
when the resulting structure matched a polyhedral
graph with n + 1 vertices. If it can be shown that
this operation is only applicable in specific cases,
then the possible shapes and counts of polyhedra
corresponding to a given degree distribution may
be determined theoretically.
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