The Number of Non-overlapping Edge Unfoldings in Convex Regular-faced Polyhedra EuroCG 2024

 \bigcirc Takumi SHIOTA[†], Yudai ENOMOTO[‡],

Takashi HORIYAMA[‡], Toshiki SAITOH[†]

- * Kyushu Institute of Technology, Japan
- [‡] Hokkaido University, Japan

March 15, 2024

Definition 1 [R. Uehara, 2020]

An edge unfolding of the polyhedron is a flat polygon formed by cutting its edges and unfolding it into a plane.

Cutting along the thick line of each left cube ...

(a) Edge unfolding

(b) Not edge unfolding

Definition 1 [R. Uehara, 2020]

An edge unfolding of the polyhedron is a flat polygon formed by cutting its edges and unfolding it into a plane.

Cutting along the thick line of each left cube ...

(b) Not edge unfolding

Convex regular-faced polyhedra

Definition 2

A convex regular-faced polyhedron is a convex polyhedron with all faces being regular polygons.

Overlapping edge unfoldings exist in some convex polyhedra.

Truncated dodecahedron [T. Horiyama and W. Shoji, 2011]

Truncated Icosahedron [T. Horiyama and W. Shoji, 2011]

Overlapping edge unfoldings exist in some convex polyhedra.

Truncated dodecahedron [T. Horiyama and W. Shoji, 2011]

Truncated Icosahedron [T. Horiyama and W. Shoji, 2011]

Overlapping edge unfoldings exist in some convex polyhedra.

Truncated dodecahedron [T. Horiyama and W. Shoji, 2011]

Truncated Icosahedron [T. Horiyama and W. Shoji, 2011]

Overlapping edge unfoldings exist in some convex polyhedra.

Truncated dodecahedron [T. Horiyama and W. Shoji, 2011]

Truncated Icosahedron [T. Horiyama and W. Shoji, 2011]

Overlapping edge unfoldings exist in some convex polyhedra.

Truncated dodecahedron [T. Horiyama and W. Shoji, 2011]

Truncated Icosahedron [T. Horiyama and W. Shoji, 2011]

percentages among all edge unfoldings.

Our results

Count # non-overlapping edge unfoldings for some convex regular-faced polyhedra and get their percentages.

Our results in Archimedean solids

Archimedean solids	# edge unfoldings [T. Horiyama et al., 2013]	# non-overlapping edge unfoldings
Sunb cube	89,904,012,853,248	85,967,688,920,076
Truncated dodecahedron	4,982,259,375,000,000,000	931,603,573,888,462,350
Truncated Icosahedron	375,291,866,372,898,816,000	366,359,657,802,290,909,354

Our results in Johnson solids (1)

Johnson solids	# edge unfoldings [T. Horiyama et al., 2013]	<pre># non-overlapping edge unfoldings</pre>
J20	29,821,320,745	27,158,087,415
J21	8,223,103,375,490	6,297,186,667,720
J24	5,996,600,870,820	5,492,624,228,190
J32	699,537,024,120	699,433,603,320
J33	745,208,449,920	745,198,979,400

Our results in Johnson solids (2)

Johnson solids	# edge unfoldings [T. Horiyama et al., 2013]	<pre># non-overlapping edge unfoldings</pre>
J34	193,003,269,869,040	190,653,702,525,040
J38	270,745,016,304,350	214,085,775,357,270
J39	272,026,496,000,000	215,087,798,524,180
J44	5,295,528,588	5,231,781,954
J45	13,769,880,349,680	13,386,219,088,644

Our results in Johnson solids (3)

Johnson solids	# edge unfoldings [T. Horiyama et al., 2013]	<pre># non-overlapping edge unfoldings</pre>
J54	75,973	75,749
J55	709,632	705,144
J56	707,232	702,520
J57	6,531,840	6,457,860
J58	92,724,962	92,219,782

Our results in Johnson solids (4)

Johnson solids	# edge unfoldings [T. Horiyama et al., 2013]	<pre># non-overlapping edge unfoldings</pre>
J59	1,651,482,010	1,632,941,030
J60	1,641,317,568	1,621,738,522
J61	28,745,798,400	28,183,512,978
J66	54,921,311,280	39,055,563,000
J67	90,974,647,120,896	43,437,626,181,464

Our results in Archimedean prisms

Archimedean <i>n</i> prisms	# edge unfoldings [T. Horiyama et al., 2013]	# non-overlapping edge unfoldings
24 prism	639,620,518,118,400	597,547,526,278,102
25 prism	2,486,558,615,814,025	2,270,951,013,426,530
26 prism	9,651,161,613,824,796	8,680,724,875,408,140
27 prism	37,403,957,244,654,675	33,593,039,475,394,300
28 prism	144,763,597,316,784,768	128,484,071,528,042,000
29 prism	559,560,282,425,278,229	273,052,412,937,434,000
30 prism	2,160,318,004,043,512,500	1,012,562,467,010,050,000
31 prism	8,331,163,769,982,715,231	3,755,308,489,795,020,000
32 prism	32,095,304,749,163,937,792	13,910,558,120,316,400,000
33 prism	123,524,473,883,545,449,825	51,464,102,399,119,800,000
34 prism	474,969,297,739,230,927,564	190,077,650,531,107,000,000
35 prism	1,824,745,126,233,358,110,635	694,876,093,525,600,000,000
36 prism	7,004,614,136,879,907,849,600	2,380,408,316,368,090,000,000
37 prism	26,867,730,730,869,118,775,917	8,734,608,096,670,700,000,000
38 prism	102,981,783,095,242,000,000,000	31,927,951,665,245,000,000,000
39 prism	394,447,279,575,099,000,000,000	117,143,971,138,672,000,000,000
40 prism	1,509,843,372,596,510,000,000,000	385,268,000,158,423,000,000,000
41 prism	5,775,682,482,451,350,000,000,000	1,409,268,044,697,380,000,000,000
42 prism	22,080,875,606,379,200,000,000,000	5,178,957,938,434,480,000,000,000

Archimedean [n] prism

12

Our results in Archimedean prisms

Our results in Archimedean antiprisms

Archimedean <i>m</i> antiprisms	# edge unfoldings [T. Horiyama et al., 2013]	<pre># non-overlapping edge unfoldings</pre>
12 antiprism	51,599,794,176	49,743,531,024
13 antiprism	383,142,771,674	369,359,503,344
14 antiprism	2,828,107,288,188	2,726,368,290,352
15 antiprism	20,768,716,848,000	20,021,578,135,380
16 antiprism	151,840,963,183,392	146,378,600,602,880
17 antiprism	1,105,779,284,582,140	1,013,491,325,102,940
18 antiprism	8,024,954,790,380,540	1,501,154,452,845,900
19 antiprism	58,059,628,319,357,300	13,038,527,513,687,400
20 antiprism	418,891,171,182,561,000	98,027,112,294,661,100
21 antiprism	3,014,678,940,049,370,000	732,157,627,679,302,000
22 antiprism	21,646,865,272,061,200,000	5,463,662,878,677,080,000
23 antiprism	155,113,904,634,576,000,000	40,508,628,620,513,100,000
24 antiprism	1,109,391,149,998,440,000,000	298,293,520,418,401,000,000
25 antiprism	7,920,708,398,483,720,000,000	2,188,171,009,006,050,000,000
26 antiprism	56,460,916,728,463,100,000,000	15,982,421,259,908,100,000,000
27 antiprism	401,873,068,071,158,000,000,000	100,599,073,148,261,000,000,000
28 antiprism	2,856,496,726,273,360,000,000,000	725,756,982,845,834,000,000,000
29 antiprism	20,277,959,821,998,000,000,000,000	5,224,196,129,087,410,000,000,000
30 antiprism	143,779,866,504,299,000,000,000,000	37,518,568,275,655,300,000,000,000
31 antiprism	1,018,331,261,238,040,000,000,000,000	272,565,329,790,964,000,000,000,000
32 antiprism	7,204,899,406,395,020,000,000,000,000	2,207,488,168,172,480,000,000,000,000

Archimedean [m] antiprism

Our results in Archimedean antiprisms

Our results in Archimedean antiprisms

14

- 1. How to count # edge unfoldings (include overlapping ones)
- 2. How to count # non-overlapping edge unfoldings

Theorem 3 (Dual) [R. Uehara, 2020]

For a polyhedron Q, let V_Q be the set of faces, and E_Q be the set of edges connecting adjacent faces. Then Q can be seen as $G_O = (V_O, E_O)$.

Theorem 3 (Dual) [R. Uehara, 2020]

For a polyhedron Q, let V_Q be the set of faces, and E_Q be the set of edges connecting adjacent faces. Then Q can be seen as $G_O = (V_O, E_O)$.

Theorem 3 (Dual) [R. Uehara, 2020]

For a polyhedron Q, let V_Q be the set of faces, and E_Q be the set of edges connecting adjacent faces. Then Q can be seen as $G_O = (V_O, E_O)$.

Theorem 3 (Dual) [R. Uehara, 2020]

For a polyhedron Q, let V_Q be the set of faces, and E_Q be the set of edges connecting adjacent faces. Then Q can be seen as $G_O = (V_O, E_O)$.

Graph

 $G_O = \left(V_Q, E_Q \right)$

Theorem 3 (Dual) [R. Uehara, 2020]

For a polyhedron Q, let V_Q be the set of faces, and E_Q be the set of edges connecting adjacent faces. Then Q can be seen as $G_O = (V_Q, E_Q)$.

Graph

 $G_O = \left(V_Q, E_Q \right)$

Polyhedron Q

Theorem 4 [R. Uehara, 2020]

Let $E_U (\subset E_Q)$ be the set of edges that are not cut when unfolding Q. Then, E_U corresponds to a spanning tree in graph G_Q .

Theorem 3 (Dual) [R. Uehara, 2020]

For a polyhedron Q, let V_Q be the set of faces, and E_Q be the set of edges connecting adjacent faces. Then Q can be seen as $G_O = (V_Q, E_Q)$.

Graph

 $G_O = \left(V_Q, E_Q \right)$

Polyhedron Q

Theorem 4 [R. Uehara, 2020]

Let $E_U (\subset E_Q)$ be the set of edges that are not cut when unfolding Q. Then, E_U corresponds to a spanning tree in graph G_Q .

Theorem 3 (Dual) [R. Uehara, 2020]

For a polyhedron Q, let V_Q be the set of faces, and E_Q be the set of edges connecting adjacent faces. Then Q can be seen as $G_O = (V_O, E_O)$.

Graph

 $G_O = (V_O, E_Q)$

Polyhedron Q

Theorem 4 [R. Uehara, 2020]

Let $E_U (\subset E_Q)$ be the set of edges that are not cut when unfolding Q. Then, E_U corresponds to a spanning tree in graph G_Q .

In short ...

Q's edge unfoldings = # G_Q 's spanning trees

G_O 's spanning tree can be counted using ZDD

[J. Kawahara et al, 2017]

family of sets using a directed acyclic graph.

G_0 's spanning tree can be counted using ZDD

[J. Kawahara et al, 2017]

A data structure that compactly represents a

family of sets using a directed acyclic graph.

G_Q 's spanning tree can be counted using ZDD

 e_2

[J. Kawahara et al, 2017]

Subsetting method [H. Iwashita et al., 2013]

The ZDD operation generates a new ZDD Z_N by extracting family of sets satisfying a constraint *C* from a ZDD *Z*.

A data structure that compactly represents a

family of sets using a directed acyclic graph.

G_Q 's spanning tree can be counted using ZDD

 e_2

[J. Kawahara et al, 2017]

Subsetting method [H. Iwashita et al., 2013]

The ZDD operation generates a new ZDD Z_N by extracting family of sets satisfying a constraint *C* from a ZDD *Z*.

In this study ...

Count # non-overlapping edge unfoldings using the subsetting method.

- [Ex.] Overlapping edge unfoldings
- [T.Shiota et. al., 2023]

Spanning tree's edge set $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \dots, e_{21}\}$

Spanning tree's edge set $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \dots, e_{21}\}$

Spanning tree's edge set $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \dots, e_{21}\}$ MOPE C_1 's edge set $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$

Spanning tree's edge set $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \dots, e_{21}\}$ MOPE C_1 's edge set $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$

Spanning tree's edge set $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_8, \dots, e_{21}\}$ MOPE C_1 's edge set $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$

Spanning tree's edge set $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, a, \dots, x\}$ MOPE C_1 's edge set $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$

Spanning tree's edge set $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, a, \dots, y\}$ MOPE C_1 's edge set $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$

Spanning tree's edge set $E_T = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, b, \dots, y\}$ MOPE C_1 's edge set $E_{C_1} = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}$

- MOPE C_k can be enumerated by using rotational unfolding [T. Shiota et. al., 2023]
 - ℓ : # MOPEs in a polyhedron Q

- MOPE C_k can be enumerated by using rotational unfolding [T. Shiota et. al., 2023]
 - ℓ : # MOPEs in a polyhedron Q

 Z_{C_1}

 z_S

> Apply the subsetting method to MOPE C_k $(1 \le k \le \ell)$

 C_k

Edge unfoldings excluding those that include $C_1 \sim C_\ell$

 z_N

 $\ell = 240$

Truncated icosahedron

- MOPE C_k can be enumerated by using rotational unfolding [T. Shiota et. al., 2023]
 - ℓ : # MOPEs in a polyhedron Q

Truncated icosahedron

> Apply the subsetting method to MOPE C_k $(1 \le k \le \ell)$

 C_k

Non-overlapping edge unfolding

 Z_{C_1}

 z_S

Edge unfoldings excluding those that include $C_1 \sim C_\ell$

 ${\cal Z}_N$

Summary

- We developed an algorithm for counting the number of non-overlapping edge unfoldings in convex polyhedra.
 - ✓ Focus on MOPEs
 - ✓ Using the subsetting method (the ZDD operation)

Summary

- We developed an algorithm for counting the number of non-overlapping edge unfoldings in convex polyhedra.
 - ✓ Focus on MOPEs
 - ✓ Using the subsetting method (the ZDD operation)
- We applied this algorithm for 63 types convex regularfaced polyhedra.

Summary

- We developed an algorithm for counting the number of non-overlapping edge unfoldings in convex polyhedra.
 - ✓ Focus on MOPEs
 - ✓ Using the subsetting method (the ZDD operation)
- We applied this algorithm for 63 types convex regularfaced polyhedra.

Future works

Apply this algorithm for other convex regular-faced polyhedra and more general polyhedra.

Turtle [W. Schlickenrieder, 1997]

MOPEs in *n*-gonal Archimedean prisms

MOPEs in *n*-gonal Archimedean prisms

MOPEs in *n*-gonal Archimedean prisms

Archimedean [m] antiprism

Why did the percentage go down?

MOPEs in *m*-gonal Archimedean antiprisms

