# The Number of Non-overlapping Edge Unfoldings in Convex Regular-faced Polyhedra <br> EuroCG 2024 

© Takumi SHIOTA†, Yudai ENOMOTO*,
Takashi HORIYAMA ${ }^{\ddagger}$, Toshiki SAITOH ${ }^{\dagger}$
$\dagger$ Kyushu Institute of Technology, Japan

* Hokkaido University, Japan

March 15, 2024


## Edge unfoldings

Definition 1 [R. Uehara, 2020]
An edge unfolding of the polyhedron is a flat polygon formed by cutting its edges and unfolding it into a plane.

Cutting along the thick line of each left cube ...

(a) Edge unfolding

(b) Not edge unfolding

## Edge unfoldings

Definition 1 [R. Uehara, 2020]
An edge unfolding of the polyhedron is a flat polygon formed by cutting its edges and unfolding it into a plane.

Cutting along the thick line of each left cube ...

(a) Edge unfolding

(b) Not edge unfolding

## Convex regular-faced polyhedra

## Definition 2

A convex regular-faced polyhedron is a convex polyhedron with all faces being regular polygons.

## 5 classes



Archimedean solids
(13 types)

$n$-gonal Archimedean prisms ( $n \geq 3$ )


Platonic solids (5 types)


Johnson solids
(92 types)

## Overlapping edge unfoldings

Overlapping edge unfoldings exist in some convex polyhedra.


Truncated dodecahedron
[T. Horiyama and W. Shoji, 2011]


Truncated Icosahedron
[T. Horiyama and W. Shoji, 2011]

## Overlapping edge unfoldings

Overlapping edge unfoldings exist in some convex polyhedra.


Truncated dodecahedron
[T. Horiyama and W. Shoji, 2011]


Truncated Icosahedron
[T. Horiyama and W. Shoji, 2011]
$\checkmark$ Please peel off the tape and open the papercraft.


## Overlapping edge unfoldings

Overlapping edge unfoldings exist in some convex polyhedra.


Truncated dodecahedron
[T. Horiyama and W. Shoji, 2011]


Truncated Icosahedron
[T. Horiyama and W. Shoji, 2011]
$\checkmark$ Please peel off the tape and open the papercraft.


## Overlapping edge unfoldings

Overlapping edge unfoldings exist in some convex polyhedra.


Truncated dodecahedron
[T. Horiyama and W. Shoji, 2011]


Truncated Icosahedron
[T. Horiyama and W. Shoji, 2011]
$\checkmark$ Please peel off the tape and open the papercraft.


## Overlapping edge unfoldings

## 1



Truncated dodecahedron
[T. Horiyama and W. Shoji, 2011]


Truncated Icosahedron
[T. Horiyama and W. Shoji, 2011]
$\checkmark$ Please peel off the tape and open the papercraft.


## Overlapping e

Overlapping edge unfc


Truncated dodecahed [T. Horiyama and W. Shoji,

Non-overlapping edge unfolding
$\checkmark$ Please peel off the tape and open the papercraft.


## Overlapping e

Overlapping edge unfc


Truncated dodecahed [T. Horiyama and W. Shoji,

Non-overlapping edge unfolding
$\checkmark$ Please peel off the tape and open the papercraft.

## We want to know ...

\# non-overlapping edge unfoldings and get their percentages among all edge unfoldings.


## Our results

## Our results

Count \# non-overlapping edge unfoldings for some convex regular-faced polyhedra and get their percentages.


Platonic solids (5 types)

Archimedean solids (13 types)

$n$-gonal Archimedean prisms ( $n \geq 3$ )
m-gonal Archimedean antiprisms ( $m \geq 3$ )


Johnson solids
(92 types)

## Our results in Archimedean solids

| Archimedean <br> solids | \# edge unfoldings <br> [T. Horiyama et al., 2013] | \# non-overlapping edge <br> unfoldings |
| :---: | ---: | ---: |
| Sunb cube | $89,904,012,853,248$ | $85,967,688,920,076$ |
| Truncated dodecahedron | $4,982,259,375,000,000,000$ | $931,603,573,888,462,350$ |
| Truncated Icosahedron | $375,291,866,372,898,816,000$ | $366,359,657,802,290,909,354$ |



Sunb cube


Truncated dodecahedron


Truncated Icosahedron

## Our results in Johnson solids (1)

| Johnson solids | \# edge unfoldings <br> [T. Horiyama et al., 2013] | \# non-overlapping edge <br> unfoldings |
| :---: | ---: | ---: |
| J 20 | $29,821,320,745$ | $27,158,087,415$ |
| J 21 | $8,223,103,375,490$ | $6,297,186,667,720$ |
| J 24 | $5,996,600,870,820$ | $5,492,624,228,190$ |
| J 32 | $699,537,024,120$ | $699,433,603,320$ |
| J 33 | $745,208,449,920$ | $745,198,979,400$ |
| $91.0 \%$ | 2 |  |

## Our results in Johnson solids (2)

| Johnson solids | \# edge unfoldings <br> [T. Horiyama et al., 2013] | \# non-overlapping edge <br> unfoldings |
| :---: | ---: | ---: |
| J 34 | $193,003,269,869,040$ | $190,653,702,525,040$ |
| J 38 | $270,745,016,304,350$ | $214,085,775,357,270$ |
| J 39 | $272,026,496,000,000$ | $215,087,798,524,180$ |
| J 44 | $5,295,528,588$ | $5,231,781,954$ |
| J 45 | $13,769,880,349,680$ | $13,386,219,088,644$ |
| $98.7 \%$ |  |  |

## Our results in Johnson solids (3)

| Johnson solids | \# edge unfoldings <br> [T. Horiyama et al., 2013] | \# non-overlapping edge <br> unfoldings |
| :---: | ---: | ---: |
| J 54 | 75,973 | 75,749 |
| J 55 | 709,632 | 705,144 |
| J 56 | 707,232 | 702,520 |
| J 57 | $6,531,840$ | $6,457,860$ |
| J 58 | $92,724,962$ | $92,219,782$ |



## Our results in Johnson solids (4)

| Johnson solids | \# edge unfoldings <br> [T. Horiyama et al., 2013] | \# non-overlapping edge <br> unfoldings |
| :---: | ---: | ---: |
| J 59 | $1,651,482,010$ | $1,632,941,030$ |
| J 60 | $1,641,317,568$ | $1,621,738,522$ |
| J 61 | $28,745,798,400$ | $28,183,512,978$ |
| J 66 | $54,921,311,280$ | $39,055,563,000$ |
| J 67 | $90,974,647,120,896$ | $43,437,626,181,464$ |
| $98.8 \%$ | $98.8 \%$ | 2 |
| J 59 |  |  |

## Our results in Archimedean prisms

| Archimedean <br> $\boldsymbol{n}$ prisms | \# edge unfoldings <br> [T. Horiyama et al., 2013] | \# non-overlapping edge <br> unfoldings |
| :---: | ---: | ---: |
| 24 prism | $639,620,518,118,400$ | $597,547,526,278,102$ |
| 25 prism | $2,486,558,615,814,025$ | $2,270,951,013,426,530$ |
| 26 prism | $9,651,161,613,824,796$ | $8,680,724,875,408,140$ |
| 27 prism | $37,403,957,244,654,675$ | $33,593,039,475,394,300$ |
| 28 prism | $144,763,597,316,784,768$ | $128,484,071,528,042,000$ |
| 29 prism | $559,560,282,425,278,229$ | $273,052,412,937,434,000$ |
| 30 prism | $2,160,318,004,043,512,500$ | $1,012,562,467,010,050,000$ |
| 31 prism | $8,331,163,769,982,715,231$ | $3,755,308,489,795,020,000$ |
| 32 prism | $32,095,304,749,163,937,792$ | $13,910,558,120,316,400,000$ |
| 33 prism | $123,524,473,883,545,449,825$ | $51,464,102,399,119,800,000$ |
| 34 prism | $474,969,297,739,230,927,564$ | $190,077,650,531,107,000,000$ |
| 35 prism | $1,824,745,126,233,358,110,635$ | $694,876,093,525,600,000,000$ |
| 36 prism | $7,004,614,136,879,907,849,600$ | $2,380,408,316,368,090,000,000$ |
| 37 prism | $26,867,730,730,869,118,775,917$ | $8,734,608,096,670,700,000,000$ |
| 38 prism | $102,981,783,095,242,000,000,000$ | $31,927,951,665,245,000,000,000$ |
| 39 prism | $394,447,279,575,099,000,000,000$ | $117,143,971,138,672,000,000,000$ |
| 40 prism | $1,509,843,372,596,510,000,000,000$ | $385,268,000,158,423,000,000,000$ |
| 41 prism | $5,775,682,482,451,350,000,000,000$ | $1,409,268,044,697,380,000,000,000$ |
| 42 prism | $22,080,875,606,379,200,000,000,000$ | $5,178,957,938,434,480,000,000,000$ |

## Our results in Archimedean prisms



Archimedean [ $n$ ] prism

## Our results in Archimedean prisms



Archimedean [ $n$ ] prism

## Our results in Archimedean antiprisms

| Archimedean <br> $\boldsymbol{m}$ antiprisms | \# edge unfoldings <br> [T. Horiyama et al., 2013] | \# non-overlapping edge <br> unfoldings |
| :---: | ---: | ---: |
| 12 antiprism | $51,599,794,176$ | $49,743,531,024$ |
| 13 antiprism | $383,142,771,674$ | $369,359,503,344$ |
| 14 antiprism | $2,828,107,288,188$ | $2,726,368,290,352$ |
| 15 antiprism | $20,768,716,848,000$ | $20,021,578,135,380$ |
| 16 antiprism | $151,840,963,183,392$ | $146,378,600,602,880$ |
| 17 antiprism | $1,105,779,284,582,140$ | $1,013,491,325,102,940$ |
| 18 antiprism | $8,024,954,790,380,540$ | $1,501,154,452,845,900$ |
| 19 antiprism | $58,059,628,319,357,300$ | $13,038,527,513,687,400$ |
| 20 antiprism | $418,891,171,182,561,000$ | $98,027,112,294,661,100$ |
| 21 antiprism | $21,64,678,940,049,370,000$ | $732,157,627,679,302,000$ |
| 22 antiprism | $155,113,965,272,061,200,000$ | $5,463,662,878,677,080,000$ |
| 23 antiprism | $1,109,391,149,998,476,000,000$ | $40,508,628,620,513,100,000$ |
| 24 antiprism | $7,920,708,398,483,720,000,000$ | $298,293,520,418,401,000,000$ |
| 25 antiprism | $56,460,916,728,463,100,000,000$ | $2,188,171,009,006,050,000,000$ |
| 26 antiprism | $401,873,068,071,158,000,000,000$ | $15,982,421,259,908,100,000,000$ |
| 27 antiprism | $2,856,496,726,273,360,000,000,000$ | $100,599,073,148,261,000,000,000$ |
| 28 antiprism | $20,277,959,821,998,000,000,000,000$ | $725,756,982,845,834,000,000,000$ |
| 29 antiprism | $143,779,866,504,299,000,000,000,000$ | $5,224,196,129,087,410,000,000,000$ |
| 30 antiprism | $3,51,568,275,655,300,000,000,000$ |  |
| 31 antiprism | $1,018,331,261,238,040,000,000,000,000$ | $272,565,329,790,964,000,000,000,000$ |
| 32 antiprism | $7,204,899,406,395,020,000,000,000,000$ | $2,207,488,168,172,480,000,000,000,000$ |

## Our results in Archimedean antiprisms



Archimedean [ m ] antiprism

## Our results in Archimedean antiprisms



Archimedean [ $m$ ] antiprism

## Our results in Archimedean antiorisms

Papercraft, you have in hand


Archimedean [m] antiprism

## Our results in Archimedean antiorisms

Papercraft, you have in hand


1. How to count \# edge unfoldings (include overlapping ones)
2. How to count \# non-overlapping edge unfoldings

## \# edge unfoldings including overlaps

## Theorem 3 (Dual) [R. Uehara, 2020]

For a polyhedron $Q$, let $V_{Q}$ be the set of faces, and $E_{Q}$ be the set of edges connecting adjacent faces. Then $Q$ can be seen as $G_{Q}=\left(V_{Q}, E_{Q}\right)$.


Polyhedron $Q$

## \# edge unfoldings including overlaps

## Theorem 3 (Dual) [R. Uehara, 2020]

For a polyhedron $Q$, let $V_{Q}$ be the set of faces, and $E_{Q}$ be the set of edges connecting adjacent faces. Then $Q$ can be seen as $G_{Q}=\left(V_{Q}, E_{Q}\right)$.


Polyhedron $Q$

## \# edge unfoldings including overlaps

Theorem 3 (Dual) [R. Uehara, 2020]
For a polyhedron $Q$, let $V_{Q}$ be the set of faces, and $E_{Q}$ be the set of edges connecting adjacent faces. Then $Q$ can be seen as $G_{Q}=\left(V_{Q}, E_{Q}\right)$.


Polyhedron $Q$

# Graph <br> \# edge unfoldings includ $G_{Q}=\left(V_{Q}, E_{Q}\right)$ 

Theorem 3 (Dual) [R. Uehara, 2020]
For a polyhedron $Q$, let $V_{Q}$ be the set of faces, and $E_{Q}$ be the set of edges connecting adjacent faces. Then $Q$ can be seen as $G_{Q}=\left(V_{Q}, E_{Q}\right)$.


Polyhedron $Q$

## \# edge unfoldings includ $G_{Q}=\left(V_{Q}, E_{Q}\right)$

Theorem 3 (Dual) [R. Uehara, 2020]
For a polyhedron $Q$, let $V_{Q}$ be the set of faces, and $E_{Q}$ be the set of edges connecting adjacent faces. Then $Q$ can be seen as $G_{Q}=\left(V_{Q}, E_{Q}\right)$.


Polyhedron $Q$

## Theorem 4 [R. Uehara, 2020]

Let $E_{U}\left(\subset E_{Q}\right)$ be the set of edges that are not cut when unfolding $Q$. Then, $E_{U}$ corresponds to a spanning tree in graph $G_{Q}$.


Edge unfolding $U$

## \# edge unfoldings includ $G_{Q}=\left(V_{Q}, E_{Q}\right)$

Theorem 3 (Dual) [R. Uehara, 2020]
For a polyhedron $Q$, let $V_{Q}$ be the set of faces, and $E_{Q}$ be the set of edges connecting adjacent faces. Then $Q$ can be seen as $G_{Q}=\left(V_{Q}, E_{Q}\right)$.


Polyhedron $Q$

## Theorem 4 [R. Uehara, 2020]

Let $E_{U}\left(\subset E_{Q}\right)$ be the set of edges that are not cut when unfolding $Q$. Then, $E_{U}$ corresponds to a spanning tree in graph $G_{Q}$.


Edge unfolding $U$

## \# edge unfoldings includ $G_{Q}=\left(V_{Q}, E_{Q}\right)$

Theorem 3 (Dual) [R. Uehara, 2020]
For a polyhedron $Q$, let $V_{Q}$ be the set of faces, and $E_{Q}$ be the set of edges connecting adjacent faces. Then $Q$ can be seen as $G_{Q}=\left(V_{Q}, E_{Q}\right)$.


Polyhedron $Q$

## Theorem 4 [R. Uehara, 2020]

Let $E_{U}\left(\subset E_{Q}\right)$ be the set of edges that are not cut when unfolding $Q$. Then, $E_{U}$ corresponds to a spanning tree in graph $G_{Q}$.


Edge unfolding $U$

In short ...
\# Q's edge unfoldings $=\# G_{Q}$ 's spanning trees

## \# edge unfoldings including overlaps $\triangle$

\# $G_{Q}$ 's spanning tree can be counted using ZDD

[J. Kawahara et al, 2017]

A data structure that compactly represents a family of sets using a directed acyclic graph.
\# $G_{Q}$ 's spanning tree can be counted using ZDD

[J. Kawahara et al, 2017]

A data structure that compactly represents a

## \# e

 family of sets using a directed acyclic graph. \# $G_{Q}$ 's spanning tree can be counted using ZDD
[J. Kawahara et al, 2017]

## Subsetting method [H. Iwashita et al., 2013]

The ZDD operation generates a new ZDD $Z_{N}$ by extracting family of sets satisfying a constraint $C$ from a ZDD $Z$.


A data structure that compactly represents a family of sets using a directed acyclic graph.
$\# G_{Q}$ 's spanning tree can be counted using ZDD

[J. Kawahara et al, 2017]

## Subsetting method [H. Iwashita et al., 2013]

The ZDD operation generates a new ZDD $Z_{N}$ by extracting family of sets satisfying a constraint $C$ from a ZDD $Z$.

## In this study ...

Count \# non-overlapping edge unfoldings using the subsetting method.


## \# non-overlapping edge unfoldings

[Ex.] Overlapping edge unfoldings
[T .Shiota et. al., 2023]


Spanning tree's edge set $E_{T}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{8}, \cdots, e_{21}\right\}$

## \# nol Minimal overlapping partial edge unfolding (MOPE) $C_{1}$

[Ex.] Overlapping edge unfoldings
[T .Shiota et. al., 2023]


Spanning tree's edge set $E_{T}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{8}, \cdots, e_{21}\right\}$

## \# no l Minimal overlapping partial edge unfolding (MOPE) $C_{1}$

[Ex.] Overlapping edge unfoldings
[T .Shiota et. al., 2023]



Spanning tree's edge set $E_{T}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{8}, \cdots, e_{21}\right\}$ MOPE $C_{1}$ 's edge set $\quad E_{C_{1}}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$

## \# nol Minimal overlapping partial edge unfolding (MOPE) $C_{1}$

[Ex.] Overlapping edge unfoldings
[T .Shiota et. al., 2023]


## \# nol Minimal overlapping partial edge unfolding (MOPE) $C_{1}$

[Ex.] Overlapping edge unfoldings
[T .Shiota et. al., 2023]


## \# nol Minimal overlapping partial edge unfolding (MOPE) $C_{1}$

[Ex.] Overlapping edge unfoldings
[T .Shiota et. al., 2023]


Spanning tree's edge set $E_{T}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, a, \cdots, x\right\}$
MOPE $C_{1}$ 's edge set $\quad E_{C_{1}}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$
$>E_{C_{1}} \subset E_{T} \Rightarrow$ Edge unfoldings always have overlap

## \# nol Minimal overlapping partial edge unfolding (MOPE) $C_{1}$

[Ex.] Overlapping edge unfoldings [T .Shiota et. al., 2023]


Spanning tree's edge set $E_{T}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, a, \cdots, y\right\}$
MOPE $C_{1}$ 's edge set $\quad E_{C_{1}}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$
$>E_{C_{1}} \subset E_{T} \Rightarrow$ Edge unfoldings always have overlap

## \# no l Minimal overlapping partial edge unfolding (MOPE) $C_{1}$

[Ex.] Overlapping edge unfoldings [T .Shiota et. al., 2023]



Spanning tree's edge set $E_{T}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, b, \cdots, y\right\}$ MOPE $C_{1}$ 's edge set $\quad E_{C_{1}}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$
$>E_{C_{1}} \subset E_{T} \Rightarrow$ Edge unfoldings always have overlap


Spanning tree's edge set $E_{T}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, b, \cdots, y\right\}$
MOPE $C_{1}$ 's edge set $\quad E_{C_{1}}=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$
$>E_{C_{1}} \subset E_{T} \Rightarrow$ Edge unfoldings always have overlap

## \# non-overlapping edge unfoldings

$>$ MOPE $C_{k}$ can be enumerated by using rotational unfolding
[T. Shiota et. al., 2023]
$\ell$ : \# MOPEs in a polyhedron $Q$


Truncated icosahedron

## \# non-overlapping edge unfoldings

$>$ MOPE $C_{k}$ can be enumerated by using rotational unfolding
[T. Shiota et. al., 2023]
$\ell$ : \# MOPEs in a polyhedron $Q$


Truncated icosahedron
$\Rightarrow$ Apply the subsetting method to MOPE $C_{k}(1 \leq k \leq \ell)$


Edge unfoldings
excluding those that include $C_{1} \sim C_{\ell}$

## \# non-overlapping edge unfoldings

$>$ MOPE $C_{k}$ can be enumerated by using rotational unfolding
[T. Shiota et. al., 2023]
$\ell$ : \# MOPEs in a polyhedron $Q$


Truncated icosahedron
$\Rightarrow$ Apply the subsetting method to MOPE $C_{k}(1 \leq k \leq \ell)$


Non-overlapping edge unfolding


Edge unfoldings excluding those that include $C_{1} \sim C_{\ell}$

## Summary

$>$ We developed an algorithm for counting the number of non-overlapping edge unfoldings in convex polyhedra. $\checkmark$ Focus on MOPEs
$\checkmark$ Using the subsetting method (the ZDD operation)

## Summary

$>$ We developed an algorithm for counting the number of non-overlapping edge unfoldings in convex polyhedra. $\checkmark$ Focus on MOPEs
$\checkmark$ Using the subsetting method (the ZDD operation)
> We applied this algorithm for 63 types convex regularfaced polyhedra.

## Summary

$>$ We developed an algorithm for counting the number of non-overlapping edge unfoldings in convex polyhedra. $\checkmark$ Focus on MOPEs
$\checkmark$ Using the subsetting method (the ZDD operation)
$>$ We applied this algorithm for 63 types convex regularfaced polyhedra.

## Future works

Apply this algorithm for other convex regular-faced polyhedra and more general polyhedra.


Turtle
[W. Schlickenrieder, 1997]

## Why did the percentage go down?



Archimedean [ $n$ ] prism

## Why did the percentage go down?

MOPEs in $n$-gonal Archimedean prisms


MOPE in $n=28$

## Why did the percentage go down?

MOPEs in $n$-gonal Archimedean prisms


## Why did the percentage go down?

MOPEs in $n$-gonal Archimedean prisms


MOPE in $n=29$

## Why did the percentage go down?



Archimedean [ m ] antiprism

## Why did the percentage go down?

MOPEs in $m$-gonal Archimedean antiprisms


